DOI QR코드

DOI QR Code

Graphene Growth with Solid Precursor-Polyethylene

고체 전구체-폴리에틸렌을 이용한 그래핀 성장

  • Ryu, Jongseong (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 류종성 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2019.03.25
  • Accepted : 2019.04.19
  • Published : 2019.05.27

Abstract

Chemical vapor deposition method using $CH_4$ gaseous hydrocarbons is generally used to synthesize large-area graphene. Studies using non-gaseous materials such as ethanol, hexane and camphor have occasionally been conducted. In this study, large-area graphene is synthesized via chemical vapor deposition using polyethylene as a carbon precursor. In particular, we used a poly glove, which is made of low-density polyethylene. The characteristics of the synthesized graphene as functions of the growth time of graphene and the temperature for vaporizing polyethylene are evaluated by optical microscopy and Raman spectroscopy. When the polyethylene vaporizing temperature is over $150^{\circ}C$, large-area graphene with excellent quality is synthesized. Raman spectroscopy shows that the D peak intensity increased and the 2D peak intensity decreased with increasing growth time. The reason for this is that sp3 bonds in the graphene can form when the correct amount of carbon source is supplied. The quality of the graphene synthesized using polyethylene is similar to that of graphene synthesized using methane gas.

Keywords

References

  1. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  2. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. X. Du, I. Skachko, A. Barker and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  5. R. S. Edwards and K. S. Coleman, Nanoscale, 5, 38-51 (2013). https://doi.org/10.1039/C2NR32629A
  6. K. S. Novoselov, A. K. Geim, S. V. Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  7. Y. Zhang, Y. -W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  8. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  9. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  10. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y Choi and B. H. Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  12. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  13. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres and S. smirnov, ACS Nano, 5, 6069 (2011). https://doi.org/10.1021/nn201978y
  14. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, J. Nano Res., 2, 509 (2009). https://doi.org/10.1007/s12274-009-9059-y
  15. H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang and X. Duan, Nat. Commun., 4, 2096 (2013). https://doi.org/10.1038/ncomms3096
  16. K. L. Cashdollar, I. A. Zlochower, G. M. Green, R. A. Thomas and M. Hertzberg, J. Loss Prev. Process Indust., 13, 327 (2000). https://doi.org/10.1016/S0950-4230(99)00037-6
  17. M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010). https://doi.org/10.1166/jnn.2010.2939
  18. M. Ahmed, N. Kishi, R. Sugita, A. Fukaya, I. Khatri, J. Liang, S. M. Mominuzzaman, T. Soga, and T. Jimbo, J. Mater. Sci.: Mater. Electron., 24, 2151 (2013). https://doi.org/10.1007/s10854-013-1073-x
  19. Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura and H. Shinohara, Appl. Phys. Lett., 96, 263105 (2010). https://doi.org/10.1063/1.3458797
  20. A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly and P. M. Ajayan, Chem. Mater., 22, 3457 (2010). https://doi.org/10.1021/cm101027c
  21. G. Kalita, M. Matsushima, H. Uchida, K. Wakita and M. Umeno, J. Mater. Chem., 20, 9713 (2010). https://doi.org/10.1039/c0jm01352h
  22. S. Sharma, G. Kalita, R. Hirano, S. M. Shinde, R. Papon, H. Ohtani and M. Tanemura, Carbon, 72, 66 (2014). https://doi.org/10.1016/j.carbon.2014.01.051
  23. G. Ruan, Z. Sun, Z. Peng and J. M. Tour, ACS Nano., 5, 7601-7607 (2011). https://doi.org/10.1021/nn202625c
  24. P. J. Barham, J. M. Hill, A. Keller and C. D. Rosney, J. Mater. Sci. Lett., 7, 1271 (1988). https://doi.org/10.1007/BF00719956
  25. W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao and S. S. Pei, Nanotechnology, 23, 035603 (2011). https://doi.org/10.1088/0957-4484/23/3/035603
  26. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
  27. R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. -C. Charlier, M. Pan and M. Terrones, Sci. Rep., 2, 1 (2012).
  28. C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Gong, Q. -H. Wu, F. Gao, C. -S. Lee and W. Zhang, Nanoscale, 5, 600 (2013). https://doi.org/10.1039/C2NR32897F
  29. Eckmann, A. Felten, I. Verzhbitskiy, R. Davey and C. Casiraghi, Phys. Rev. B, 88, 035426 (2013). https://doi.org/10.1103/PhysRevB.88.035426
  30. W. Choi, M. A. Shehzad, S. Park and Y. Seo, RSC Adv., 7, 6943 (2017). https://doi.org/10.1039/C6RA27436F
  31. T. M. G. Mohiuddin, A Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim and A. C. Ferrari, Phys. Rev. B, 79, 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433
  32. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol., 8, 235 (2013). https://doi.org/10.1038/nnano.2013.46
  33. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov and C. Casiraghi, Nano Lett., 12, 3925 (2012). https://doi.org/10.1021/nl300901a