• Title/Summary/Keyword: Vapor Fraction

Search Result 173, Processing Time 0.03 seconds

Resourcing of Methane in the Biogas Using Membrane Process (분리막을 이용한 바이오가스의 메탄 자원화)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.406-414
    • /
    • 2014
  • Biogas is a gaseous mixture produced from microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45-75% methane, 30-50% carbon dioxide, 0.3% of hydrogen sulfide gas and fraction of water vapor. To achieve the standard composition of the biogas the treatment techniques like absorption or membrane separation was performed for the resourcing of biogas. In this paper the experimental results of the methane purification in simulated biogas mixture consisted of methane, carbon dioxide and hydrogen sulfide were presented. The composite membrane is manufactured within polysulfone in order to increase the separation performances for the gaseous mixtures of $CO_2$ and $CH_4$ which are main components of the biogas. The effects of feed pressures and mixed gas on the separation of $CO_2-CH_4$ by membrane are investigated. Chelate chemical was utilized to treat the purification of methane from the $H_2S$ concentration of 0.3%.

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

Aspect ratio enhancement of ZnO nanowires using silicon microcavity

  • Kar, J.P.;Das, S.N.;Choi, J.H.;Lee, Y.A.;Lee, T.Y.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • A great deal of attention has been focused on ZnO nanowires for various electronics and optoelectronics applications. in the pursuit of next generation nanodevices, it would be highly preferred if well-ordered ZnO nanowires of lower dimension could be fabricated on silicon. Before the growth of nanowires, silicon substrates were selectively etched using silicon nitride as masking layer. Vertical aligned ZnO nanowires were grown by metal organic chemical vapor deposition on patterned silicon substrate. The shape of nanostructures was greatly influenced by the micropatterned surface of the substrate. The aspect ratio, packing fraction and the number density of nanowires on top surface are around 10, 0.8 and $10^7\;per\;mm^2$, respectively, whereas the values are 20, 0.3 and $5\times10^7\;per\;mm^2$, respectively, towards the bottom of the cavity. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy confirmed the single crystalline growth of the ZnO nanowires along [0001] direction.

  • PDF

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

Deposition of Poly-$Si_{1-x}Ge_x$ Thin Film by RTCVD (RTCVD에 의한 다결정 $Si_{1-x}Ge_x$ 박막 증착)

  • Kim, Jae-Jung;Lee, Seung-Ho;So, Myeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.690-698
    • /
    • 1995
  • The Poly-S $i_{1-x}$G $e_{x}$ thin films were deposited on oxidized Si wafer by RTCVD(rapid thermal chemical vapor deposition) using Si $H_4$and Ge $H_4$, at 450 ~5$50^{\circ}C$. The variation of Ge mole fraction and the deposition rate of S $i_{1-x}$G $e_{x}$ thin film were studied as a function of the deposition temperature and the Ge $H_4$/Si $H_4$input ratio, and the crystal phase and the surface roughness were studied by XRD and AFM(atomic force microscopy), respectively. The experimental results showed that the activation energy for the deposition of poly-S $i_{1-x}$G $e_{x}$ was about 32~37Kca /mol and the deposition rate of S $i_{1-x}$G $e_{x}$ thin films was increased with increasing the deposition temperature and the input ratio. From the analysis of composition, it was known that the Ge mole fraction within the poly-S $i_{1-x}$G $e_{x}$ thin film was decreased with decreasing the input ratio and increasing the deposition temperature. As-deposited S $i_{1-x}$G $e_{x}$ thin films were polycrystalline over the entire experimental range. But those were amorphous at the deposition temperature of 450, 475$^{\circ}C$ and the input ratio of 0.05. By adding the Ge $H_4$, poly-S $i_{1-x}$G $e_{x}$ thin film were deposited at relatively lower deposition temperatures($\leq$ 5$50^{\circ}C$) than those of conventional poly-Si(>$600^{\circ}C$). From surface roughness measurement of poly-S $i_{1-x}$G $e_{x}$ it was found that the surface roughness( $R_{i}$ ) increased with increasing the deposition temperature and input ratio.and input ratio.

  • PDF

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

A New Device for Intrauterine Artificial Insemination in the Dog

  • Kong, I.K.;Yu, D.J.;Jeong, S.R.;Oh, I.S.;Yang, C.J.;Cho, S.G.;Bae, I.H.;Oh, D.H.;Kim, H.R.;Cho, S.K.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.180-184
    • /
    • 2003
  • The intrauterine inseminator (IUI) was developed to provide the method of depositing dog semen into the uterine body instead of the vagina. The IUI consists of a vaginal endoscope, a balloon sheath, and injection catheter. When the endoscope is inserted into the vagina and the balloon expanded with air, the cervical os becomes visible so a injection catheter can be inserted through the cervix for deposition of the frozen-thawed semen. The efficacy of the IUI device was compared to intra-vaginal artificial insemination using semen that had been collected and frozen from pooled sperm-rich fraction of ejaculates collected from two Jindo dog donors. Aliquots of semen were extended with a Tris-egg yolk diluent, centrifuged, the seminal plasma removed, the pellet resuspended with the same diluent, and cooled to $5^{\circ}C$ over a 2 h period. A Tris-egg yolk-glycerol extender was added at $5^{\circ}C$; after 1 h, semen was loaded into 0.5 ml straws, and straws were frozen in LN vapor for 5 min, and immersed in LN for storage. The final sperm concentration for freezing was approximately $100{\times}10^{6}cells/ml$. The straws were thawed at $70^{\circ}C$ for precisely 6 sec, 1.5 ml Tris-egg yolk buffer at $38^{\circ}C$ added, and the 2 ml of thawed semen was used for a single insemination using the IUI device. Each bitch was inseminated at optimal insemination point, which was estimated by vaginal epithelial cells staining and progesterone concentration analysis. Use of the IUI device resulted in 21 of 26 females giving birth to 89 pups ($4.2{\pm}1.6$ pups per litter), while intra-vaginal AI resulted in 6 of 15 females whelping a total of 17 pups ($2.8{\pm}1.2$ pups per litter). We believe the IUI device is easier to use than previously described devices used for intrauterine insemination. In our experience the expansion of the balloon has a calming effect on the bitch that aids the inseminator. These results indicate that the IUI device was able to provide high fertility with 50 million frozen sperm per insemination and two inseminations.

Determination of the mole fractions of ethylene oxide and freons in medical liquefied gas mixture by GC/AED (GC/AED를 이용한 의료용 액화혼합가스 중 산화에틸렌 및 프레온 가스류의 몰분율 측정)

  • Kim, Hyunjoo;Kim, Dalho;Lim, Arang;Lee, Taeck-Hong;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.382-387
    • /
    • 2012
  • Ethylene oxide ($C_2H_4O$, EtO) is used as a raw material for the production of ethylene glycol and other industrially important material such as ethanolamines and also used as a disinfecting agent. It is applied for gas-phase sterilization of thermally sensitive medical equipment, and for processing of storage facilities as a mixture with fluorinated hydrocarbon. In this perspective, accurate determination of the mole fractions of components in the liquefied gas mixture is required for the quality control and safety of production and use. Each component of the liquefied gas mixture has different chemical and physical properties such as vapor pressure and boiling point. Therefore, we can suppose that analytical results can be different according to the introduction method for the gas phase of upper layer, or for the liquid phase of lower layer in gas cylinder. In this study, we designed a new on-line sample injection device for the liquefied gas mixture in liquid or gas state, and applied to the analysis of liquefied gas mixture of ethylene oxide and fluorinated hydrocarbons by GC/AED (gas chromatograph-atomic emission detector). We studied performance of AED, and effect of sample introduction and selected wavelength to the accuracy and repeatability of analytical results.