• 제목/요약/키워드: Vapor Fraction

검색결과 173건 처리시간 0.028초

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

YSZ 박막의 성장속도와 특성에 미치는 전기화학증착의 조건의 영향(II) (Influences of Electrochemical Vapor Deposition Conditions on Growth Rate ad Characteristics of YSZ Thin films(II))

  • 박동원;전치훈;김대룡
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.355-361
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates. Y2O3 mol% of thin film was linearly increased with yttrium mole fraction of vapor phase. As yttrium mole fraction(Zyc13=0.18) increased dense and faceted thin films were enhanced. However as the yttrium mole fraction (Zyc13=0.04) decreased porous thin films with monoclinnic phase prevailed. With increasing pressure difference of substrate sides penetration depth decreased porosity and amount of monoclinic phase in the films increased.

  • PDF

과냉 비등류의 실제건도와 보이드율에 관한 연구 (A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow)

  • 김종헌;김춘식;김경근;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

칼리나 사이클의 발전효율에 영향을 미치는 요소에 관한 이론적 해석 (Theoretical Analysis on the Factors Affecting the Power Efficiency of the Kalina Cycle)

  • 이기우;전원표;신현승;박병덕
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5425-5433
    • /
    • 2014
  • 본 연구에서는 발전용량이 20kW인 폐열회수용 칼리나 발전시스템의 설계 자료를 확보하기 위하여 EES프로그램을 사용하여 해석하였으며, 암모니아농도, 증기압력, 열원온도 및 냉각수온도가 발전효율에 미치는 영향을 분석하였다. 연구결과에서, 암모니아 농도는 낮을수록, 증기압력은 높을수록 발전효율은 증가하였다. 하지만 암모니아 농도가 너무 낮으면 발전효율이 감소하는 영역이 있었다. 터빈입구의 증기압력이 높아지면 발전효율도 높아지며, 암모니아 농도가 높을수록 증기압력의 영향을 더 많이 받는 것으로 나타났다. 최대의 발전효율을 얻기 위한 암모니아 농도, 증기압력, 열원온도 및 냉각수온도 조건이 존재한다는 것을 알 수 있었다. 20kW의 발전시스템에서는 증기압력은 25bar, 열원온도는 $160^{\circ}C$, 냉각수온도가 $10^{\circ}C$일때 암모니아 농도가 0.4에서 발전효율은 최고로 15%까지 가능하였다.

주석-물 시스템의 증기폭발 완화에 대한 연구 (A Study on the Mitigation of Vapor Explosions with Tin-Water Sytem)

  • 신용승;김종환;홍성완;송진호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.397-400
    • /
    • 2002
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain. So, KAERI launched a real experimental program called TROI using $UO_{2}$ and $ZrO_{2}$ to investigate the vapor explosion. Besides TROI tests, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A vapor explosion was observed while the amount of air bubble and water temperature were systematically varied The mass and temperature of tin are $50\;g\;and\;150^{\circ}C$, respectively. Water temperature is set to $24^{\circ}C\;and\;50^{\circ}C$. The void fraction of air bubble ranges from $0\;to\;10\;{\%}$. The strength of vapor explosion was measured using dynamic pressure sensors attached in reactor tube wall. as a function of void fraction. In addition, a high speed video filming up to 1,000 flame/sec was taken in order to visually investigate the behavior of the vapor explosion .

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

플라즈마 화학증착법(PACVD)에 의한 TiN증착시 증착변수가 미치는 영향(II) -TiCl4, N2의 입력분율을 중심으로- (Effects of Deposition Parameters on TiN Film by Plasma Assisted Chemical Vapor Deposition(II) -Influence of TiCl4, N2 inlet Fraction on the TiN Deposition-)

  • 이병호;신영식;김문일
    • 열처리공학회지
    • /
    • 제2권4호
    • /
    • pp.11-18
    • /
    • 1989
  • To investigate the influence of $TiCl_4$, $N_2$ inlet fraction on the TiN layer, TiN film was deposited onto the STC3 and STD11 steel from gas mixtures of $TiCl_4/N_2/H_2$ by the radio frequency plasma assisted chemical vapor deposition. The films were deposited at various $TiCl_4$, $N_2$ inlet fractions. The results showed that the film thickness was increased with $TiCl_4$ inlet fraction. However, while the thickness was increased with $N_4$ inlet fraction under 0.4 the thickness was decreased with increasing $N_2$ inlet fraction over 0.4. The density of deposited films was varied as $TiCl_4$, $N_2$ inlet fraction and its maximum value was about $5.6g/cm^3$. The contents of chlorine were increased with increasing $TiCl_4$ inlet fraction and nearly constant with increasing $N_2$ inlet fraction.

  • PDF

A Study of the Optimum Pore Structure for Mercury Vapor Adsorption

  • Kim, Byung-Joo;Bae, Kyong-Min;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1507-1510
    • /
    • 2011
  • In this study, mercury vapor adsorption behaviors for some kinds of porous materials having various pore structures were investigated. The specific surface area and pore structures were studied by BET and D-R plot methods from $N_2$/77 K adsorption isotherms. It was found that the micropore materials (activated carbons, ACs) showed the highest mercury adsorption capacity. In a comparative study of mesoporous materials (SBA-15 and MCM-41), the adsorption capacity of the SBA-15 was higher than that of MCM-41. From the pore structure analysis, it was found that SBA-15 has a higher micropore fraction compared to MCM-41. This result indicates that the mercury vapor adsorptions can be determined by two factors. The first factor is the specific surface area of the adsorbent, and the second is the micropore fraction when the specific surface areas of the adsorbent are similar.

HFC32/134a 계의 기-액상평형에 관한 연구 (Investigation of vapor-liquid equilibrium of HFC32/134a system)

  • 김창년;박영무;이병권;안병성
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.527-535
    • /
    • 1997
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC32/134a are measured in the range between 258.15 and 283.15K at compositions of 0.2, 0.4, 0.6 and 0.8 mole fraction of HFC32. Twenty-two equilibrium data are obtained. Based upon the present data, the binary interaction parameter for Carnahan-Starling-De Santis equation of state is calculated. Temperature range of data is extended to 313.04K using the data in the open literatures. Interaction parameters are determined at nine isotherms.

  • PDF

분사압력변화가 분무특성에 미치는 영향에 관한 수치적 고찰 (Numerical Analysis of the Effect of Injection Pressure Variation on Spray Characteristics)

  • 박권하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.113-119
    • /
    • 1997
  • This paper addresses to the injection pressure effect on the diesel spray. The injection pressure is varied from 10MPa, in general system, upto 200MPa, in high pressured system in order to understand the effect. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. The droplet distributions, vapor fractions and gas flows are analyzed in various injection pressure cases.

  • PDF