• Title/Summary/Keyword: Vapor Condensation

Search Result 252, Processing Time 0.024 seconds

Assessment of the MELCOR 1.8.6 condensation heat transfer model under the presence of noncondensable gases (중대사고 해석코드 MELCOR 1.8.6의 비응축성기체 존재 시 응축열전달 모델 평가)

  • Yoo, Ji Min;Lee, Dong Hun;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 2016
  • A condensation heat transfer model is very important for the safety analysis of nuclear power plants. Especially, condensation under the presence of noncondensable gases (NCGs) is an important issue in nuclear safety because the presence of even a small quantity of NCGs in the vapor largely reduces the condensation rate. In this study, the condensation heat transfer model of the severe accident analysis code MELCOR 1.8.6 has been assessed using a set of condensation experiments performed under the thermal-hydraulic conditions similar to those inside a containment during design-basis accidents or severe accidents. Experiment conditions are categorized into 4 types according to the shape of the condensation surface: vertical flat plates, outer surface of vertical pipes, inner surface of vertical pipes, the inner surface of horizontal pipes. The results of the calculations show that the MELCOR code generally under-predicts the condensation heat transfer except the condensation on inner surface of vertical pipes.

Effect of Vapor Pressure of Adsorbate on Adsorption Phenomena (흡착질의 증기압이 흡착에 미치는 영향)

  • Kim, Sang-Won;Kwon, Jun-Ho;Kang, Jeong-Hwa;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • Adsorption process is largely influenced by pore structures of adsorbents and physical properties of adsorbates and adsorbents. The previous studies of this laboratory was focused on the role of pore structures of adsorbents. And we found some pores of adsorbates which have larger pore diameters than the diameter of adsorbate are filled with easily. In this study the effects of physical and chemical properties of adsorbates and adsorbents, such as pore size distribution, vapor pressure on adsorption were investigated more thoroughly at the concentration of adsorbate of 1000 ppm. The adsorption in the pore ranges of $2{\sim}4$ times of adsorbates's diameter could be explained by space filling concept. But there was some condensation phenomena at larger pore ranges. The errors between the adsorbed amount of non-polar adsorbates and the calculated amounts by considering factors were found to be 44.46%, positively, and -142%, negatively. When vapor pressure is considered, the errors between the adsorbed amount of non-polar adsorbates and the calculated amounts were in the range of $1.69%{\sim}32.25%$ positively, and negatively $-1.08%{\sim}-63.10%$.

An Analytical Study on the Condensation of Submerged Vapor Jets in Subcooled Liquids (과냉수에서의 증기응축제트에 대한 해석적 연구)

  • 김기웅;이계복;김환열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.333-340
    • /
    • 1999
  • A numerical study of turbulent condensing vapor jet submerged in subcooled liquids has been conducted. A physical model of the process is presented employing the locally homogeneous flow approximation of two phase flow in conjunction with a $\kappa$-$\varepsilon$-g model of turbulence properties. In this model the turbulence is represented by differential equations for its kinetic energy and dissipation. A differential equation for the concentration fluctuations is solved and a clipped normal probability distribution function is proposed for the mixture fraction. Effects of steam mass flux, pool temperature and nozzle internal diameter on the condensing vapor jet are also analyzed. The model is evaluated using existing data for turbulent condensing vapor jets. The agreement between the predictions and the available experimental data is good.

  • PDF

An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

Comparative Research of Fog Using the Regular Observation and GPS Integrated Water Vapor (정규관측자료와 GPS 연직누적 수증기량을 이용한 안개에 대한 비교연구)

  • Lee, Jaewon;Cho, Jungho;Baek, Jeongho;Park, Jong-Uk;Park, Chieup
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.417-427
    • /
    • 2008
  • In this paper, we analyzed the physical and thermodynamic characteristics of fog by using the integrated water vapor (IWV) from Global Positioning System (GPS) networks and the regular observation data of meteorological stations in GPS sites. The cases of a radiation and an advection fog were selected as samples, the conversions of water substance from the water vapor to cloud water in fog were detected by the Bulk Water-Continuity Model, and the pattern analysis is adapted on GPS IWV, temperature, wind and relative humidity. Under the specific hypothesis (saturation and stable), GPS IWV could detect quantitatively the phase changing between the water vapor and cloud water content with condensation/evaporation during the formation and dissipation of fog. After it reaches to the saturation, the relative humidity can be a limited indicator for fog. However, GPS IWV can detect the status change of fog even after the saturation. It has indicated that GPS IWV could be a new observing technique for the processes of the fog formation and the dissipation.

Formation and Dispersion of Nitric Acid Vapor from Stack Flue Gas

  • Park, Mi Jeong;Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.96-107
    • /
    • 2014
  • Extreme recovery of the thermal energy from the combustion of flue gas may bring about early gas condensation resulting in the increased formation of nitric acid vapor. The behavior of the nitric acid formed inside the stack and in the atmosphere was investigated through a computer-aided simulation in this study. Low temperatures led to high conversion rates of the nitrogen oxide to nitric acid, according to the Arrhenius relationship. Larger acid plumes could be formed with the cooled flue gas at $40^{\circ}C$ than the present exiting gas at $115^{\circ}C$. The acid vapor plume of 0.1 ppm extended to 25 m wide and 200 m high. The wind, which had a seasonal local average of 3 m/s, expanded the influencing area to 170 m along the ground level. Its tail stretched 50 m longer at $40^{\circ}C$ than at $115^{\circ}C$. The emission concentration of the acid vapor in the summer season was a little lower than in the winter. However, a warm atmosphere facilitated the Brownian motion of the discharged flue gas, finally leading to more vigorous dispersion.

Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

  • Yoon, Ho Joon;Al Naqbi, Waleed;Al-Yahia, Omar S.;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1926-1938
    • /
    • 2020
  • We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube (알루미늄 다채널 평판관내 R22의 흐름응축 열전달 성능 비교)

  • Seo, Young-Ho;Lim, Dae-Taeg;Park, Ki-Jung;Jung, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1270-1275
    • /
    • 2004
  • Flow condensation heat transfer coefficients(HTCs) of R22 and R134a were measured on horizontal aluminum multi-channel tube. The experimental apparatus was composed of three main parts ; a refrigerant loop, a water loop and a water-ethylene glycol loop. The test section in the refrigerant loop was made of aluminum multi-channel tube of 1.4 mm hydraulic diameter and 0.53 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. The data scan vapor qualities $(0.1{\sim}0.9)$, mass flux ($200{\sim}400$ $kg/m^{2}s$) and heat flux ($7.3{\sim}7.7$ $kW/m^{2}$) at $40{\times}0.2^{\circ}C$ saturation temperature in small hydraulic diameter tube. It was found that some well-known previous correlations were not suitable for multichannel tube. So, It must develop new correlations for multi-channel tubes.

  • PDF