• 제목/요약/키워드: Van der Pauw method

검색결과 136건 처리시간 0.025초

Crystal Growth of InP by VGF Method using Auqrtz Ampoule Characterization

  • Park, E.S.;C.H. Jung;J.J. Myung;J.Y. Hong;Kim, M.K.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.419-431
    • /
    • 1999
  • InP, III-V binary compound semiconductor, single crystal was grown by VGF (vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal changed in conical quartz crucible hat was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of 10-5 Torr and sealed up. In metal in the quartz crucible was melted at 1070$^{\circ}C$ and phophorous sublimated at 450$^{\circ}C$, there after it was diffused in In melt and so InP composition was formed. By cooling the InP composition melt (2$^{\circ}C$∼5$^{\circ}C$/hr of cooling rate) in range of 1070$^{\circ}C$∼900$^{\circ}C$, InP crystal was grown. the grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties of them were measured by Van der Pauw method. At the cooling rate of 2$^{\circ}C$/hr, its direction was (111), quality of the ingot ws better upper side of the ingot than lower. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were 1015∼1016/㎤, 2x103∼3x104$\textrm{cm}^2$/Vsec and 2x10-1∼2x10-3Ωcm in the range of 150K∼300K, respectively.

  • PDF

CdTe의 결정성장에 관한 연구 (A Study on the CdTe Crystal Growth)

  • 박민서;이재구;정성훈;송복식;문동찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 1995
  • CdTe crystals were grown by the vertical Bridgman method. P-type DcTe crystals were grown with Cd:Te= 1:1.001 wt. % ratio, while n-type CdTe crystals were 1:1 Also, CdTe:In crystals were investigated, Lattic constants were 6.489${\AA}$ for p-type 6.480${\AA}$for n=type and 6.483${\AA}$ for CdTe:In EPD was 10$\^$-3/-10$\^$4/cm$\^$-2/ for n-, p-type CdTd, 10$\^$4/-10$\^$5/cm$\^$-2 for Cd:Te:In using by E-Ag solution for (111) plane The carrier concentration, the resistivity and the Hall carrier mobility measured by the van der Pauw method were p=5.78${\times}$10$\^$15/cm$\^$-3/, $\rho$=20.2$\Omega$cm, ${\mu}$$\sub$p/=75.6cm$\^$-2/ V$\^$-1/ sec$\^$-1/ for p-typem n=2.98${\times}$10$\^$16/cm$\^$-3/, $\rho$=0.214$\Omega$cm, ${\mu}$$\sub$p/=978.9cm$\^$-2/ V$\^$-1/ sec$\^$-1/ for n-type and n=7.45${\times}$10$\^$16/cm$\^$-3/, $\rho$=1.54 ${\times}$10$\^$3/$\Omega$cm, ${\mu}$$\sub$p/=658.4 cm$\^$-2/ V$\^$-1/ sec$\^$-1/ for CdTe:In crystals, Transmittance of p-type CdTe was 61% that of n-type was 65%, Cd:Te:In showed 60% IR transmittance.

  • PDF

리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성 (Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries)

  • 김호진;정우창;정연욱;이준형;김정주
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

열처리된 CuGaSe2 단결정 박막의 점결함연구 (A study on point defect for thermal annealed CuGaSe2 single crystal thin film)

  • 이상열;홍광준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

InSb 결정 성장과 Zn 확산에 관한 연구 (A study on the InSb crystal growth and the Zn diffusion)

  • 김백년;송복식;문동찬;김선태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.816-819
    • /
    • 1992
  • Binary compound semiconductor InSb crystal which has direct-transition energy gap (0.17 ev) grown by vertical Bridgman method, then the electric-magnetic and optical properties of InSb crystal were surveyed. The growth rate of the crystals was 1mm/hr and the lattice constant $a_\circ$ of the grown crystal was 6.4863$\AA$. The electrical properties were examined by the Hall effect measurement with the van der Pauw method in the temperature range of 70$\sim$300K, magnetic field range of 500$\sim$10000 gauss. The undoped InSb crystal was n-type, the concentration and the electron mobility were 2$\sim$6 ${\times}$ $10^{16}$$\textrm{cm}^{-3}$ and carrier mobility was 6$\sim$2${\times}$$10^{4}$$cm^{2}$/v.sec at 300K, respectively. The carrier mobility was decreased with $T^{-1/2}$ due to the lattice scattering above 100K, and decreased by impurity scattering below100K. The magnetoresistance was increased 190% at 9000 gauss as compared with non-appliced magnetic field and the magnetoresistance was increased with increasing the magnetic field. Also, the Hall voltage was increased with increasing the magnetic field and decreasing the thickness of sample. The optical energy band gap of InSb at room temperature determined using the IR spectrometer was 0.167eV. The diffusion depth of Zn into InSb proportionally increased with the square root of diffusion time and the activation energy for Zn diffusion was 0.67eV. The temperature dependence of diffusion coefficient was $D=4.25{\times}10^{-3}$exp (-0.67/$K_BT$).

  • PDF

$Ru^{+3}$, $Pt^{+4}$로 표면 처리한 GaSb의 결정 성장과 특성 (Study on the Crystal Growth and Characterization of GaSb treated with $Ru^{+3}$, $Pt^{+4}$)

  • 이재구;오장섭;송복식;정성훈;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 1995
  • GaSb crystals were grown by the vertical Bridgman method. P-type GaSb crystals were grown with Ga:Sb=1:1 at % ratio without dopants and with Te, respectively. Also, GaSb:Te crystals were investigated. Lattice constants were 6.117${\AA}$ for p-type. The carrier concentration, the resistivity, and the carrier mobility measured by the van der Pauw method were p≡8 x $10^{16}$$cm^{-3}$, p≡0.20$\Omega$-cm, ${\mu}$$_{n}$$400\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for p-type, n≡1 x $10^{17}$$cm^{-3}$, p≡0.15 $\Omega$-cm, ${\mu}$$_{n}$$500\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for n-type at 300K. In case of treating with metal ion of $Ru^{+3}$, $Pt^{+1}$, p≡2 x $10^{17}$$cm^{-3}$, p≡0.08$\Omega$-cm, ${\mu}$$_{n}$≡420$\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for p-type, n≡2.5 x $10^{17}$$cm^{-13}$, p≡0.07 $\Omega$-cm, ${\mu}$$_{n}$≡520$\textrm{cm}^2$$V^{-1}$$sec^{-1}$ for n-type were obtained.

  • PDF

Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성 (Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method)

  • 윤석진;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe$_2$ 단결정 박막 성장과 특성 (Growth and Characterization of CuGaTe$_2$ Sing1e Crystal Thin Films by Hot Wall Epitaxy)

  • 유상하;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.273-280
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the CuGaTe$_2$ single crystal thin films was prepared from horizontal furnance. For extrapolation method of X-ray diffraction patterns for the CuGaTe$_2$ polycrystal, it was found tetragonal structure whose lattice constant a$\_$0/ and c$\_$0/ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaTe$_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 670 $^{\circ}C$ and 410 $^{\circ}C$ respective1y, and the thickness of the single crystal thin films is 2.1 $\mu\textrm{m}$. The crystalline structure of single crystalthin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of CuGaTe$_2$ single crystal thin films deduced from Hall data are 8.72${\times}$10$\^$23/㎥, 3.42${\times}$10$\^$-2/㎡/V$.$s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the CuGaTe$_2$ single crystal thin film, we have found that the values of spin orbit coupling Δs.o and the crystal field splitting Δcr were 0.0791 eV and 0/2463eV at 10K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0490eV, 0.00558eV, respectively.

  • PDF

솔-젤법에 의한 Al-doped ZnO 투명전도막의 제조 및 특성 (Preparation and Characterization of Al-doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing)

  • 현승민;홍권;김병호
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.149-154
    • /
    • 1996
  • ZnO and Al-doped ZnO thin films were prepared by sol-gel dip-coating method and electrical and optical properties of films were investigated. Using the zinc acetate dihydrate and acetylaceton(AcAc) as a chelating agent stable ZnO sol was synthesized with HCl catalyst. Adding aluminium chloride to the ZnO sol Al-doped ZnO sol could be also synthesized. As Al contents increase the crystallinity of ZnO thin film was retarded by increased compressive stress in the film resulted from the difference of ionic radius between Zn2+ and Al3+ The thickness of ZnO and Al-doped ZnO thin film was in the range of 2100~2350$\AA$. The resistivity of ZnO thin films was measured by Van der Pauw method. ZnO and Al-doped ZnO thin films with annealing temperature and Al content had the resistivity of 0.78~1.65$\Omega$cm and ZnO and Al-doped ZnO thin film post-annealed at 40$0^{\circ}C$ in vacuum(5$\times$10-5 torr) showed the resistivity of 2.28$\times$10-2$\Omega$cm. And the trans-mittance of ZnO and Al-doped ZnO thin film is in the range of 91-97% in visible range.

  • PDF

Hot Wall Epitaxy(HWE)법에 의한 $CuGaSe_2$ 단결정 박막의 성장과 에너지 밴드갭의 온도 의존성 (Growth and temperature dependence of energy band gap for $CuGaSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy)

  • 이상열;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.97-98
    • /
    • 2007
  • A stoichiometric. mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}$ and $11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $4.87{\times}10^{17}\;cm^{-3}$ and $129\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;335\;K)$.

  • PDF