• Title/Summary/Keyword: Van Hiele 기하 학습 수준

Search Result 16, Processing Time 0.019 seconds

Development and Application of Learning Materials for Freudenthal's Mathematising Activities in the Middle School Geometry (중등기하에서 Freudenthal의 수학화 활동을 위한 학습자료 개발과 적용)

  • Choi, Jong-Chul;Kim, Hong-Chul
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.69-96
    • /
    • 2008
  • The purpose of this paper is to perceive the problems of current geometry education in the middle school mathematics, to develop some learning materials fitted for the mathematising activities based on Freudenthal's learning theories and to analyze the mathematising process followed by teaching-learning activities. For this purpose, we design activity-oriented learning materials for geometry based on Freudenthal's learning theories, and appropriate teaching-learning models are established for the middle school geometry at the 8-NA stage level according to the theory of van Hiele's geometry learning steps. After applied to the practical lessons, the effects of mathematical activities are analyzed.

  • PDF

Development of Adventure-Game style Program for Figure Learning (도형 학습을 위한 어드벤처 게임형 학습 프로그램 개발)

  • Lee, Jae-Mu;Kim, Min-Hee
    • Journal of Korea Game Society
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2006
  • This study is aimed to develop adventure-game style learning program for offering different levels curriculum in mathematics and figure areas in elementary schools. The 7th mathematics curriculum introduced different levels curriculum considering learners' ability, aptitude, requirement, interest so that it could improve learners' growth potential and educational efficiency. But in reality, it is quite difficult to increase educational efficiency by conducting individual learning classes according to students' ability due to the big differences among students' levels in addition to high population in each classroom. The purpose of this study is to offer different levels curriculum based on van Hiele theory and develop adventure-game style learning program to increase interests of the learners. This program can improve students' academic achievement by offering differentiated curriculums to learners who need advanced or supplementary learning materials. And it also enhances leaners' spatial-perceptual ability by offering various operating activities in figures learning.

  • PDF

초등기하학습에서의 GSP를 활용한 영재교육 자료 개발 및 활용 방안

  • Kim, Hae-Gyu;Hyeon, Chang-Seok
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.321-340
    • /
    • 2004
  • 본 연구에서는 van Hieles의 기하학 사고 수준에 따라, GSP(Geometer's SketchPad)를 활용한 초등기하 영재교육에 활용할 수 있는 프로그램을 구안하여, 구안된 프로그램을 제주대학교 부설 과학영재교육원 초등수학반 학생들에게 적용, 그 효과를 검증해봄으로써, GSP를 이용한 초등수학 영재 교육 프로그램의 개발과 활용 가능성을 연구하는데 그 목적이 있다.

  • PDF

A Development and Applications of Problem Solving Tool for Learning Geometry (기하 학습을 위한 문제해결 도구 개발 및 적용)

  • Bae, Jin-Seong;Kim, Kap-Su
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.3
    • /
    • pp.449-459
    • /
    • 2010
  • Using a geometric computer program achieve learning effects as handling various function and has advantage to overcome the environment of classroom through providing an inquiring surroundings in the figure learning at an elementary school. There are many software for drawing the geometric. But currently most is focus on how to use the softwares without contents. So, It is necessary to develope a geometric software adapted cognitive development of primary schoolchildren. This study is aim to analyze elementary mathematic curriculum based on Van Heiles theory, to develope the software(Geometry for Kids : GeoKids) considering cognitive level of the primary schoolchildren. This software is developed to substitute a ruler and a compass considering cognitive level of the primary schoolchildren. Using mouse, GeoKids software help a child to draw easily lines and circles and this software notice another lines and circle automatically for a more accurate drawing figures. Children can use practically this software in connection with subjects of elementary mathematic curriculum.

  • PDF

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.

Cabri II 를 이용한 증명 교수학습 방법에 관한 연구

  • Ryu, Hui-Chan;Jo, Wan-Yeong
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.17-32
    • /
    • 1999
  • 본 논문의 목적은 Cabri II 를 이용하여 형식적이고 연역적인 증명수업 방법의 대안을 찾는 데 있다. 형식적인 증명을 하기 전에 탐구와 추측을 통한 발견과 그 결과에 대한 비형식적인 증명 활동을 강조한다. 역동적인 기하소프트웨어인 Cabri II 는 작도가 편리하고 다양한 예를 제공하여 추측과 탐구 그리고 그 결과의 확인을 위한 풍부한 환경을 제공할 수 있으며, 끌기 기능을 이용한 삼각형의 변화과정에서 관찰할 수 있는 불변의 성질이 형식적인 증명에 중요한 역할을 한다. 또한 도형에 기호를 붙이는 활동은 형식적인 증명을 어렵게 만드는 요인 중의 하나인 명제나 정리의 기호적 표현을 보다 자연스럽게 할 수 있게 해 준다. 그러나, 학생들이 증명은 더 이상 필요 없으며, 실험을 통한 확인만으로도 추측의 정당성을 보장받을 수 있다는 그릇된 ·인식을 심어줄 수도 있다. 따라서 모든 경우에 성립하는 지를 실험과 실측으로 확인할 수는 없다는 점을 강조하여 학생들에게 형식적인 증명의 중요성과 필요성을 인식시킬 필요가 있다. 본 연구에 대한 다음과 같은 후속연구가 필요하다. 첫째, Cabri II 를 이용한 증명 수업이 학생들의 증명 수행 능력 또는 증명에 대한 이해에 어떤 영향을 끼치는지 특히, van Hiele의 기하학습 수준이론에 어떻게 작용하는 지를 연구할 필요가 있다. 둘째, 본 연구에서 제시한 Cabri II 를 이용한 증명 교수학습 방법에 대한 구체적인 사례연구가 요구되며, 특히 탐구, 추측을 통한 비형식적인 중명에서 형식적 증명으로의 전이 과정에서 나타날 수 있는 학생들의 반응에 대한 조사연구가 필요하다.

  • PDF