• Title/Summary/Keyword: Valve-point

Search Result 223, Processing Time 0.024 seconds

Robust Decoupling Control of Ship Propulsion System with CPP (CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어)

  • 김영복;변정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

An Experimental Study on the Acoustic Characteristics of a Reciprocal Compressor (냉장고용 왕복동식 압축기의 소음특성에 관한 실험적 연구)

  • 박철희;차용웅;홍성철;주재만;김영헌;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.196-201
    • /
    • 1997
  • In point of noise and vibration, it is easy to occur a noise and vibration, because the reciprocal compressor is composed of crank shaft, rod piston and etc. Therefore, it is important to understand the mechanism of reciprocal compressor. In this study, we measured the sound pressure level of compressor. There are two dominent frequencies. The first of one results from the suction part. In suction process, the suction valve flutteres, and it produces the noise of the first frequency. The other results from the structural vibration of the shell resonated by discharge pipe. Thus, to reduce the noise of compressor, it will be most efficiency to redesign muffler for the first frequency and discharge pipe for the second frequency.

  • PDF

A Study on Development of Shutoff Operating System of Ultra-High Pressure Positive Displacement Pump (초고압 용적형 펌프의 체절운전시스템 개발에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul;Sung, Gi-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Ultra-high pressure positive displacement pump can discharge high pressure water with mass volume, which depends on periodic changes in volume that made by rotation motor. Its high efficiency of discharge is one of the most strong point of positive displacement pump. Due to its simple system structure, it can be miniaturized and lightened. Positive displacement pump can discharge high pressure with stable flow rate, irrespective of pressure fluctuate. This is the reason that positive displacement pump was used instead of centrifugal pump. In this study, shutoff operating system was developed for positive displacement pump to secure safety of high pressure operate. This shutoff system contains controller system, electronic clutch, and relief valve, and each part is mutual supplementation. Speed test was carried out in order to check operation of controller program and electronic clutch and fluid flow, venting experiment of the relief valve. It was confirmed that segment system of ultra-high pressure positive displacement pump is operated.

A Study on the Performance Characteristics of Water Heat Source Heat Pump System using CO2 Refrigerant (이산화탄소를 사용한 수열원 히트펌프 시스템의 성능 특성에 관한 실험적 연구)

  • Chang, Keun-Sun;Kang, Hee-Jeong;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3366-3373
    • /
    • 2011
  • In this study, performance characteristics of a water source heat pump system using $CO_2$ as a refrigerant are investigated experimentally. Cooling and heating capacities and COP of the system are analyzed for various system performance variables such as refrigerant charge, expansion valve opening, compressor frequency and internal heat exchanger. Results show that optimum amount of refrigerant charge and expansion valve opening exists at maximum point of COP curve, and cooling capacity increases but COP decreases with the increase of compressor frequency. When the internal heat exchanger is installed, cooling capacity increases about 4.0% whereas heating capacity decreases about 0.89% compared to the case without internal heat exchanger.

Development of leakage test facility for leak signal characteristic analysis in water pipeline (상수도관로 누수신호의 특성 분석을 위한 누수 실험시설 개발)

  • Park, Sanghyuk;Kwak, Philljae;Lee, Hyundong;Choi, Changho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.459-469
    • /
    • 2017
  • A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

Changes of Interleukin-10 level in Patients Undergoing cardiopulmonary Bypass (체외순환에 따른 혈중 Interleukin-10의 변화)

  • 홍남기;이동협;정태은;이정철;한승세
    • Journal of Chest Surgery
    • /
    • v.33 no.8
    • /
    • pp.648-654
    • /
    • 2000
  • Background: Cardiopulmonary bypass during open heart surgery causes systemic inflammatory respose. IL-10 is an anti-inflammatory cytokine that inhibits inflammatory process and protects organ function by down regulation of pro-inflammatory cytokine release and maintenance of blood level balance with pro-inflammatory cytokines. Mateial and Method: Plasma IL-10 levels were measured and analyzed in 22 patients who underwent open heart surgery (11 cases of coronary artery bypass graft, 11 cases of valve replacement) under cardiopulmonary bypass since 1988 January to July at Department of Thoracic and Czardiovascular surgery, Yeungnam University Hospital. 1g of methylprednisolone was administrated to thirteen patients randomly. Blood samp.es were taken and collected at the time of induction of anesthesia, 10 min before cardiopulmonary bypass, 10 min after starting of CPB, 10 min aftr aortic cross clamping, 10 min after ACC release, and 10 min, 2 hours, and `5 hours after CPB respectively. The plasma levels of IL-10 were determined by enzyme-linked immunosorbent assays(ELISA). Wilcoxon-Raule Sum test was used for statistical analysis. Result: In all 22 patients, cardiopulmonary bypass time was used for statistical analysis. Result: In all 22 patients, cardiopulmonary bypass time was 171$\pm$41.4 min and aortic cross clamp time was 118$\pm$36.5 min. Peak IL-10 level was achieved at 10 min after ACC(361.0$\pm$52.81pg/ml) and was decreased sharply at 2 hours after CPB. Peak IL-10 level was correlated positively with aortic cross clamp time(p=0.011); however, it did not correlated with bypass time(p=0.181). In valve replacement group, mean IL-10 level at peak point was 567.89$\pm$107.69 pg/ml and was significantly higher than that of coronary artery bypass group(205.67$\pm$192.70 pg/ml)(p<0.001). ACC time in valve replacement group was significantly longer than that of coronary artery bypass group(p<0.01), however, bypass time was not(p=0.212). Thirteen patients with steroid pretreatment before starting of CPB showed relatively higher plasma IL-10 level than in control group, however, no statistical significance was noted(p=0.19). Conclusion: plasma level of IL-10 was increased in association with cardiopulmonary bypass and revealed peak at 10 min after ACC release. IL-10 level was correlated positively with ACC time. Therefore, systemic inflammatory respeonse in association with cardiopulmonary bypass could be decreased by reducing ACC time during cardiac surgery.

  • PDF

Fuel Spiking Test for the Surge Margin Measurement in a Gas Turbine Engine (연료 돌출 시험에 의한 가스터빈엔진의 서지마진 측정)

  • Lee, Jin-Kun;Lee, Kyung-Jae;Ha, Man-Ho;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal is superposed on the engine controller demand signals and the combined signals are used to control a fuel control valve. For the superposition, a subsystem composed of a fuel controller and a function generator is used. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the preliminary test, the fuel spiking signals are in good agreement with the dynamic pressure at the fuel line and at the compressor discharge point. After the preliminary test, a fuel spiking test to measure the surge point at a specific engine speed was performed. The test results show that the fuel spiking test is very effective in the measurement of surge.

Performance Analysis of a Multi-type Inverter Heat Pump (멀티형 인버터 열펌프의 냉방성능해석에 관한 연구)

  • Kim, Y. C.;Park, G. W.;Youn, Y.;Min, M. K.;Choi, Y, D,
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2001
  • A system simulation program was developed for a multi-type inverter heat pump. Electronic expansion valve(EEV) was used to extend the capacity modulating range of the heat pump as expansion device. The program was also developed to calculate actual system performance with the building load variation with climate during a year. The performance variation of a multi-type hat pump with two EEV and an inverter compressor was simulated with compressor speed, capacity, and flow area of the EEV. As a result, the optimum operating frequency of the compressor and openings of the expansion device were decided at a given load. As compressor speed increased, he capacity of heat pump increased, the capacity of heat pump increased. Therefore flow area of EEV should be adjusted to have wide openness. Thus the coefficient of performance(COP) of the heat pump decreased due to increasement of compressor power input. The maximum COP point at a given load was decided according to the compressor speed. And under the given specific compressor speed and the load, the optimum openings point of EEV was also decided. Although the total load of indoor units was constant, the operating frequency increased as the fraction of load in a room increased. Finally ad the compressor power input increased, the coefficient of performance decreased.

  • PDF

A Study on Performance Characteristics of a Dehumidifier with Multi-layer Type Heat Exchangers Varying Frontal Air Velocity (다층형 열교환기를 이용한 제습기의 전면 풍속 변화에 따른 성능 특성에 관한 연구)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2323-2327
    • /
    • 2010
  • The experimental apparatus consists of dehumidifier with multi-layer type heat exchangers to remove the moisture from automatic equipments, semiconductors, and manufacturing processes under the low temperature environment, and chemical production lines which are likely to take moisture. The major components of this system are four evaporators with different fin pitch, two compressors, two condensers and an expansion valve. In this study, the performance characteristics of dehumidifier is analyzed by the variations of frontal air velocity in the first heat exchanger(evaporator). The cooling capacity of each heat exchanger is acquired by the enthalpy calculating from measuring point of temperature and relative humidity of the first heat exchanger from 1.0m/s to 4.0m/s with increasing interval 0.5m/s, and the front air velocity. As a result, it is found that cooling capacity of the first heat exchanger showed the best cooling capacity when its frontal air velocity is 2.0 m/s.