• 제목/요약/키워드: Valve-point

검색결과 225건 처리시간 0.027초

거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성 (Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device)

  • 박광준;최종구;이상석;이범주
    • 한국자기학회지
    • /
    • 제21권1호
    • /
    • pp.32-36
    • /
    • 2011
  • DC 마그네트론 스퍼터링을 이용하여 제작한 고감도 거대자기저항 스핀밸브 박막 소자를 이용하여 수위 및 수온을 측정할 수 있는 센서를 제작하였다. 제작한 센서의 수위 및 수온 분해능은 각각 $400\;m{\Omega}/mm$$100\;m{\Omega}/^{\circ}C$ 이었으며, 이는 전립선 비대증 KTP(potassium titanyl phosphate) 레이저 치료기에서 냉각기의 수위 및 수온을 조절하는 센서로써 응용이 가능하다.

역류방지 체크밸브의 응고해석 특성 (Solidification Analysis Characteristics of Back Flow Prevention Check Valve)

  • 윤정인;문정현;손창효;이정진
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.

Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System

  • Kim Sang-Hyun;Yoo Wan-Suk;Oh Kwang-Jung;Hwang In-Sung;Oh Jeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.426-434
    • /
    • 2006
  • The impact of leakage was incorporated into the transfer functions of the complex head and discharge. The impedance transfer functions for the various leaking pipeline systems were also derived. Hydraulic transients could be efficiently analyzed by the developed method. The simulation of normalized pressure variation using the method of characteristics and the impulse response method shows good agreement to the condition of turbulent flow. The leak calibration could be performed by incorporation of the impulse response method with Genetic Algorithm (GA) and Harmony Search (HS). The objective functions for the leakage detection can be made using the pressure-head response at the valve, or the pressure-head or the flow response at a certain point of the pipeline located upstream from the valve. The proposed method is not constrained by the Courant number to control the numerical dissipation of the method of characteristics. The limitations associated with the discreteness of the pipeline system in the inverse transient analysis can be neglected in the proposed method.

디젤기관의 아트킨슨 사이클화에 따른 제반성능의 열역학적 해석 (A Thermodynamic Analysis on the Performance with turning Diesel Cycle into Diesel-Atkinson Cycle)

  • 노기철;정양주;이종태
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.1-11
    • /
    • 2004
  • In order to recognize thermal efficiency and power improvement in case that diesel cycle is turned into diesel-atkinson cycle, the fuel-air diesel-atkinson cycle considered gas exchange process is analyzed non-dimensionally and thermodynamically. As a result, in case of diesel-atkinson cycle, as expansion ratio is increased, thermal efficiency and mean effective pressure is increased and it has maximum value at Rec=1. When diesel cycle is turned into diesel-atkinson cycle by late intake valve closing timing, thermal efficiency and power is decreased because of the decline of effective compression ratio and intake airflow, but it could be compensated by increase of compression ratio or super-charged. In case compression ratio is compensated, Rec appears 1 around 100$^{\circ}$ ABDC, and it is expected that thermal efficiency is enhanced by 14.3% compared with conventional diesel cycle. In case compression ratio and intake airflow are compensated simultaneously, super-charged pressure is demanded 2.06bar at Rec=1 and it is more efficient when only compression ratio is compensated in the view point of thermal efficiency.

지열 히트펌프에서 운전변수가 냉난방 성능에 미치는 영향에 대한 실험연구 (An Experimental Study on the Effects of Operating Variables on the Cooling and Heating Performance of Geothermal Heat Pump)

  • 장근선;강희정
    • 설비공학논문집
    • /
    • 제23권8호
    • /
    • pp.562-570
    • /
    • 2011
  • In this research, an experimental study is performed to investigate the effects of system operating variables on the cooling and heating characteristics of heat pump system using geothermal heat source and carbon dioxide as a refrigerant. System variables analyzed include compressor frequency, electronic expansion valve opening, refrigerant charge, secondary fluid temperature and flow rate. Results show that optimum refrigerant charge and electronic expansion valve opening position exist at the maximum point of COP curve, and both cooling and heating capacity increase but COPs decrease with the increase of compressor frequency. The change of a secondary fluid temperature leads to variation of overheat area and enthalpy difference in the evaporator and gas cooler. which again results in considerable variations of cooling and heating capacity and COP. In the case of effects of secondary water fluid flow rate, both cooling capacity and COP increase with the increase of secondary flow in evaporator or gas cooler, whereas heating capacity and COP decrease with the increase of flow rate in gas cooler.

선로전환부 청결을 위한 자동 분사형 윤활시스템 개발에 관한 연구 (A Study on the Development and Application of an Automatic Injection Type Lubrication System for the Cleaning of the Line Switching Part)

  • 이인철;이유신
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.455-462
    • /
    • 2023
  • In this study, an automatic spraying lubrication system was developed to maintain the cleanliness of the switchgear when detecting the movement of the track through the switchgear. To develop this system, an air tank, valve block, and spray nozzle were designed, and the safety was secured through the pressure test of the prototype after designing the air tank. Furthermore, the environmental aspect was considered by minimizing the use of lubricant by enabling the mixing of air and lubricant through the production of a valve using the Venturi principle. The performance evaluation was conducted by implementing (producing) the injection system, and the product developed in this study was deemed installable in actual switchgear. It is expected that the proposed system will enable the maintenance of the cleanliness of the track during switching and reduce faults and malfunctions caused by switchgear defects.

대체연료로서 가솔린-메타놀 혼합연료에 의한 가솔린 기관성능과 배출오염물에 관한 연구 (A study on engine performances and exhaust emissions using gasoline-methanol as an alternative fuel)

  • 김희철;용기중
    • 오토저널
    • /
    • 제3권2호
    • /
    • pp.18-26
    • /
    • 1981
  • The purpose of this paper is to study the possibility of practical use of gasoline-methanol mixed fuel as an alternative fuel of gasoline engines in the light of engine performances and harmful exhaust emissions as well as mixings and separations of the mixed fuels. When the methanol of 99.8% purity is mixed with super or regular gasoline available on the market today, the experimental results obtained without modifying carburetor in this study are as follows; 1.The separation ratio depends upon the gasoline-methanol mixing ratio only, regardless of fuel temperature and fuel additives for preventing separation of phase. 2.The critical absorption ratio is affected by the gasoline-methanol mixing ratio, its temperature and the quantity of fuel additives. 3.Concerning the distillation temperature, the initial point of all sorts of fuels is almost same,but 10% point and 35-60% point of mixed fuels are lower than those of gasoline only. 4.In case of throttle valve opening set, engine output using the mixed fuels is decreased compared to gasoline, but thermal efficiency is increased as a consequence of decreasing specific energy consumption. 5.In case of fixed load test, thermal efficiency is increased at low engine speed even under low part-load as well as under comparatively high part-load including full load. 6.CO and NOx emissions are reduced remarkably with the mixed fuels.

  • PDF

피압 단순 관로 체제에서의 인버스 임피던스를 이용한 수압기반 유속추정기술 (A pressure based flow velocity estimation technique using inverse impedance for simple pressurized pipeline systems)

  • 이정섭;고동원;최두용;김상현
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.219-228
    • /
    • 2022
  • In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(3) - 유속분포(1) (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(3) - Velocity Profile(1))

  • 박찬준;성재용;엄인용
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.169-182
    • /
    • 2016
  • This paper is the third investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, several assumptions used in the steady flow bench were examined and the flow characteristics were estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75B position. From these works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Therefore, the understanding of the detail velocity profiles is very important to keep discussing the issues about the steady flow evaluation method. For this purpose, the planar velocity profiles were measure at 1.75B position by particle image velocimetry and the characteristics were examined according to the valve angles and lifts. The results show that the planar velocity profiles of 11, 16, $21^{\circ}$ valve angle heads according to the lift are similar to each other, however, that of $26^{\circ}$ angle is an exceptional case in the all aspects. In addition, the swirl behaviors are not apparent up to 6~8 mm lift under the $21^{\circ}$ angle and somewhat arranged motions are observed over the whole plane near the highest lift. At this point, the narrower the angle, the lower the lift at which the swirl motions become clear. On the other hands, when the angle is $26^{\circ}$, the center of swirl is always farthest from the cylinder center and only the indistinct swirl is observed even if at the highest lift. Also, all the swirl centers are quite apart from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B regardless the valve angle. Related to the tangential velocity along with the radial direction, the bands of the velocity distribution are very wide and the mean velocities of cylinder center basis are lower than the velocity which is assumed in the ISM evaluation. Lastly, the mean tangential velocity profiles of swirl center basis are sometimes higher than that of ISM-assumed up to 0.6 non-dimensional distance less than 6mm lift, however, as the lift increases the profiles are different according to the angles and profile $11^{\circ}$ is the most closed to the ideal profile. Consequently, the real velocity profile is far from the assumption of ISM evaluation.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • 농업과학연구
    • /
    • 제43권3호
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.