• Title/Summary/Keyword: Valve Train System

Search Result 65, Processing Time 0.024 seconds

Structural Analysis for Gear Column of Large Bore Diesel Engine (선박 추진용 대형 디젤엔진 기어컬럼의 구조해석)

  • Lee, Jong-Hwan;Nam, Dae-Ho;Son, Jung-Ho;Bae, Jong-Gug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF

Mixed Lubrication Analysis of Cam/Tappet Interface on the Direct Acting Type Valvetrain System

  • Cho, Myung-Rae;Shin, Heung-Ju;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.685-692
    • /
    • 2001
  • This paper reports on the mixed lubrication characteristics between the cam and the tappet contact surface of direct acting type valve train systems. First, the dynamic characteristics are solved by using the lumped mass method to determine the load conditions at the contact point. Then, the minimum oil film thickness is calculated with consideration of elastohydrodynamic line contact theory and the friction force is obtained by using the mixed lubrication model which separates the hydrodynamic and the boundary friction. Finally, the average surface temperatures are calculated by using the flash temperature theory. The results show that, there are some peaks in the friction force due to the asperity contact friction, and flash temperature at the position of minimum oil film thickness. It is thought that there is a relationship between the surface temperature and cam surface wear, and therefore, the analysis on the worn cam profile has been performed.

  • PDF

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

FMECA Procedure for Failure Analysis of Train High-Speed Circuit Breaker (전동차 고속차단기 고장 분석을 위한 FMECA 기법)

  • Kim, Sung-Ryeol;Moon, Yong-Sun;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3370-3377
    • /
    • 2015
  • FMECA(Failure Mode, Effects and Criticality Analysis) techniques to make quantitative evaluation of failure effects severity and criticality have been applied to systematic failure analysis for reliability improvement of train which should provide regular service and secure high level of safety as a mass transportation system. These FMECA techniques do not fully reflect the inherent train operation and maintenance circumstances because they are based on the FMECA standards devised for other industries such as automobile industry and FMECA standard dedicated to train industry has not been established yet. This paper analyzes FMECA standards for various industries, and suggests a FMECA technique dedicated to train industry which makes failure effect analysis and criticality analysis step by step and makes criticality analysis placing emphasis on the severity of the failure effect. The proposed technique is applied to FMECA of high-speed current breaker which is a core safety device of train using field failure data for 15 years of train maintenance. The FMECA results show that breakage of arc chute has the highest risk with 3rd severity class and 5th criticality class among all the components of high-speed circuit breaker. Damage and poor contact of electronic valve, and cylinder breakage with 3rd severity class and 4th criticality class are followed by. These results can be applied to improvement of design and maintenance process for high-speed circuit breaker of train.

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

Performance Improvement of Clutch Actuating Hydraulic Control System at Semi-Automatic Transmission for Construction Vehicles (건설차량용 반자동 변속기 유압제어계의 성능 개선)

  • 이일영;윤소남;양경욱;이덕규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.10-21
    • /
    • 1996
  • In this study, as a strategy to improve shift characteristics, the authors developed a new style pressure modulator which can reduce shock torque during power shift by modulating the pattern of pressure increase in the cylinder for actuating the clutch. The remarkable merits of this new pressure modulator lie in its structural simplicity and durability, because the modulator is only composed of a poppet type valve and a few orifices. The usefulness of the new pressure modulator is confirmed by experiments and numerical analyses on a clutch control hydraulic system simplified for easy test. Also, the excellency of the transmission with the new pressure modulator is verified by experiments on a test bench for simulating the running power train of an excavator.

  • PDF

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.

Evaluation of the Energy Efficiency of the Air Engine (공기 엔진의 에너지 효율 평가)

  • Park, Jaehyeon;Baek, Jehyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.494-501
    • /
    • 2015
  • Nowadays, many people are trying to develop eco-friendly engines such as the electric motor and the air engine because the I.C. engine cause a lot of pollutants. Nevertheless of these effort, there are few evaluation and comparison of these engines to conventionally used I.C. engines. Because of this, it is difficult to determine that the eco-friendly engines are really energy saving engines. In this paper, the efficiency of the air engine is calculated. The air engine does not cause environmental pollution problem because it uses "Compressed air". Due to the air engine operated at a low temperature and spark-free condition, this engine can be used in extreme condition for safety. Despite the many advantages of the air engine, there are few analysis on the air engine because of an air engine is low energy density.

A Study for Reliability Improvement of Belt Type Door System using FMECA (FMECA 적용을 통한 벨트식 도어시스템 신뢰성 향상에 관한 연구)

  • An, Cheon-Heon;Lee, Do-Sun;Son, Young-Jin;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • As a modem urban train is getting complex in terms of high-technology in its systems and components, the failure management should be performed with scientific and systematic technique. FMEA is a technique to analyze the failure trends of component parts and influences to the higher level system in order to discover the design incompleteness and potential defects, which is for improving reliability. Especially, FMECA (Failure Mode Effects, and Criticality Analysis) is used in case that the criticality that has an immense influence to the system is important. In case of urban train, in its design and manufacturing steps, FMEA is frequently used as an analysis technique to meet the safety objectives and eliminate potential hazards/failures since the concepts of reliability of train is introduced these days. Though, FMEA technique in the maintenances steps lacks in its investigation and applications yet. FMEA is also not applied to the trains operated by Seoul metro in the design and manufacture steps excepts the newest trains. In this paper, through analyzing the failures/maintenance data of the belt-type door systems used in trains operated in Seoul metro Line 1, which is accumulated in RIMS (Rolling-stock Information Maintenance System), FMEA procedures to the belt-type door engines are proposed. Especially, an effort is made, to approach the detailed FMECA procedures to the door magnet valve and switch and door engine devices which vastly influences the customer safety and satisfaction.