• Title/Summary/Keyword: Valve Torque

Search Result 163, Processing Time 0.027 seconds

Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump (유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Jeong, Soo-Jin;Park, Kyungyeong;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

Effect of Design Parameters of Modulating Valve and Hydraulic Clutch on Shift Quality of a Power Shuttle Transmission (모듈레이팅 밸브 및 유압 클러치의 설계 변수가 전후진 파워시프트 변속기의 변속 품질에 미치는 영향)

  • 김경욱;정병학;박영준
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.187-198
    • /
    • 2003
  • This study was conducted to investigate the effect of design parameters of modulating valve and hydraulic clutch on the shift quality of a power shuttle transmission using a computer simulation. Computer simulation models of a hydraulic control system and a power shuttle drive train were developed and verified by an experimental power train in a laboratory. The software EASY5 was used for the modeling and simulation of the power shuttle transmission. Results of the study were summarized as follows: For a good shift quality. it is required to reduce the transient torque transmitted to the output shaft of the transmission as much as possible. This may be achieved by reducing the modulating time and clutch pressure. It was found that the design parameters most significantly affecting the modulating time and clutch pressure were the spring constant and displacement of a load piston of the modulating valve, and the spring constant and damping of the clutch piston. The modulating time decreased as the spring constant increased and increased as the displacement of the load piston decreased. The transient torque decreased as the modulating time increased. However their relationships were not always linear. As the damping decreased, both the modulating pressure and time decreased, which also resulted in a decrease in the transient torque. The spring constant of the clutch piston affected the modulating time and the peak transient torque. As the spring constant of the clutch increased, the peak transient torque decreased.

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

Control of the Hydraulic System Using the Global Sliding Mode Control (전역슬라이딩모드 제어를 이용한 전기유압 시스템의 제어)

  • 최형식;김명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.218-228
    • /
    • 2003
  • A hydraulic system is modeled as the second order differential equation with uncertain system parameters and disturbance composed of modeling errors. To Position the load of the hydraulic system to a desired point. the servo valve of the hydraulic system is controlled. As a control scheme. a global sliding mode control(GSMC) is Proposed Since the servo valve has a torque limit. the GSMC is designed to coordinate the position of the load along the minimum time trajectory within the torque limit. The Proposed control scheme can be designed with ranges of parametric uncertainties and specified torque limits. By the proposed control scheme, the closed form solution of the arriving time at the desired position can be estimated.

Fluid film measurements on the spherical valve plate in oil hydraulic axial piston pumps

  • Kim, J.K.;Jung, J.Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.381-382
    • /
    • 2002
  • The Fluid film between the valve plate and the cylinder block was measured by use of a gap sensor and the mercury-cell slip ring unit under real working conditions. During the operating periods, experiments with discharge pressure, revolution speed, and valve geometry was carried out for the fluid film on the valve plate. To investigate the effect of the valve shape, we designed two valve plates each having a different shape; the first valve plate was a plane valve plate. while the second valve plate was a spherical valve plate. It was noted that these two valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rate and the shan torque were also investigated in order to clarify the difference between these two types of valve plates. From the results of this study. we found that the spherical valve plate estimated good fluid film patterns and performance more than the other valve plate in oil hydraulic axial piston pumps.

  • PDF

Evaluation of Transient Performance of Carburettered Gasoline Engine (과도운전시 가솔린기관의 성능평가)

  • Cho, G.S.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.1-11
    • /
    • 1993
  • An experimental study was carried out to evaluate the characteristics of transient performance of carburettered gasoline engine under rapid accelerating transient driving conditions. In order to evaluate the characteristics of transient performance quantitatively, the concept of dead time $t_d$ response delay time $t_r$ are introduced. Performance parameters such as air mass fiowrate Gat, engine speed N, manifold boost pressure Pb, and output torque T are measured simultaneously during the rapid opening of the throttle valve by the stepping motor. During the rapid opening of the throttle valve, air mass fiowrate Gat is increased immediately without delay time, but response of engine revolution N, and output torque T are delayed. Therefore hesitation, and stumble phenomena are occurred. Dead time $t_d$ and response delay time $t_r$ of engine revolution N, which is extremely delayed comparing to other performance parameters, are respectively 0.2-0.3sec., 3.0-4.6sec., and dead time rate $t_d/{\Delta}t$ and response delay time rate $t_r/{\Delta}t$ are linearly increased with the throttle valve opening rate ${\theta}$ during the acceleration from 12 degree to 20 degree at 1250rpm.

  • PDF

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

A Study on Development 9f Rotary Valve for Performance Enhancement in SI Engine (스파크점화 기관의 성능향상을 위한 회전형 흡배기장치의 개발에 관한 연구)

  • 김치원;윤창식;김유식
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.11-20
    • /
    • 1995
  • In recent years, the study on the high efficiency of the internal combustion engine has been mainly proceeding. In this study, we developed rotary valve to achieve the improvement of volumetric efficiency and to be simple construction. And then made a comparative analysis between rotary and poppet valve. In this experiment, rotary valve enlarged the flow area of valve port to minimize the resistance of the fluid flow and to flow smoothly in intake and exhaust process. Indeed, valve timing was controlled properly lest positive pressure in exhaust process should affect intake process. Motoring and firing experiments were using engine speed and air-fuel ratio as the principle parameter and the full opening of throttle valve and minimum spark advance for best torque (MBT) as engine operating variables.

  • PDF

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

Structure Analysis and Torque Reduction Design of Industrial Ball Valve (산업용 볼밸브의 구조 해석 및 토크 저감 설계)

  • Ha, Sun-Ho;Kim, Sang-Jin;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.37-45
    • /
    • 2014
  • Ball valves are used as a key element in the process industries. The industrial development of valves has increased steadily, but continued improvement requires high design reliability and long service life. Currently, the development of high performance valves is not easy because of the lack of relevant technology in Korea. Valves are being imported at a level of up to 58 percent of the domestic market, which represents a value of almost 7 million US dollars. Therefore, in this work, the improvement of the design and performance of industrial valves has been studied in an attempt to achieve valves that will have longer service life and better output during operation. The structural stability was evaluated using the ANSYS FSI (Fluid-Structural Interaction) module. Moreover, to obtain maximum product reliability, torque analysis simulation was performed to compare and experimental results. The simulation results were used to predict the change in torque by changes in shape, thereby reducing the time and cost of manufacturing a number of prototypes for experimental validation.