• 제목/요약/키워드: Valve Thickness

검색결과 143건 처리시간 0.029초

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

기계식 인공심장판막의 경량화 설계를 위한 구조해석 (Structural Analysis for Thickness Minimization Design of a Bileaflet Mechanical Heart)

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, structural analysis is performed for the blood flow through a bileaflet mechanical heart valve. The structural static analysis is carried out to confirm the thickness minimization structural condition (minimum thickness shape of leaflet).

  • PDF

로커암 밸브 트레인의 동적 탄성유체윤활 유막 연구 (Dynamic Elastohydrodynamic Film Thickness in Rocker-Arm Valve Train System)

  • 장시열;이희락
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.195-202
    • /
    • 2003
  • Many computational researches have been performed about EHL film thickness in the contact between cam and follower in the engine valve train system. However, those computations do not explain the characteristics of dynamic film thickness which means squeeze film effect. Without the consideration of transient term in the Reynold's equation, the predicted film thickness from steady state condition has large difference from the actual film thickness. In this study, we have investigated the kinematic and dynamic simulations of rocker-arm valve train system. From the dynamic simulation, the applied load and the entraining velocity of the lubricant between cam and follower are obtained and with these values the dynamic film thickness is computed by Newton-Raphson method and compared with the steady state film thickness.

기계식 인공심장판막의 경량화 구조설계를 위한 혈액유동과 상호작용하는 판막거동의 구조역학적 특성연구 (Structural Analysis on the Leaflet Motion Interacted with Blood Flow for Thickness Minimization Design of a Bileaflet Mechanical Heart Valve)

  • 권영주;방혜철;김창녕
    • 한국CDE학회논문집
    • /
    • 제6권1호
    • /
    • pp.59-68
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, fluid analysis is performed for the blood flow through a bileaflet mechanical heart valve. Simultaneously the kinetodynamic analysis is carried out to obtain the appropriate structural condition for the structural analysis. Thereafter the structural static analysis is also carried out to confirm the thickness minimization structural condition(minimum thickness shape of leaflet).

  • PDF

로커암 밸브 트레인의 동적 탄성유체윤활 유막 연구 (Dynamic Elastohydrodynamic Film Thickness in Rocker-Arm Valve Train System)

  • 이희락;장시열
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.397-405
    • /
    • 2000
  • Many computational researches have been performed about EHL film thickness in the contact between cam and follower. However, those computations do not explain the characteristics of dynamic film thickness which means squeeze film effect. Without the consideration of transient term in the Reynold's equation, the predicted film thickness has large difference from the actual film thickness. In this study, we have investigated the kinematic and dynamic simulations of rocker-arm valve train system. From the simulation, the applied load and the entraining velocity of the lubricant between cam and follower are obtained and with these values the dynamic film thickness is computed by Newton-Raphson method and compared with the steady state film thickness.

  • PDF

LPG 용기용 밸브 구조물의 강도안전성에 관한 연구 (A Study on the Strength Safety of Valve Structure for LPG Cylinder)

  • 김청균
    • 한국가스학회지
    • /
    • 제18권6호
    • /
    • pp.27-31
    • /
    • 2014
  • 본 연구에서는 LP가스 용기용 밸브에서 취약할 것으로 예상되는 Part 1, Part 2, Part 3 지역에 대한 강도안전성을 FEM으로 해석하였다. 밸브의 두께가 1.5mm이고, LPG 압력이 3.5MPa일 때 밸브의 Part 1 모서리 부분에서 27.5MPa의 Von Mises 최대응력이 걸리는 것으로 나타났다. 또한, 밸브의 두께가 1.5mm이고, LPG 압력 3.5MPa이 밸브에 작용할 때 Von Mises 최대응력은 Part 2에서 41.5MPa, 그리고 Part 3에서 46.5MPa으로 나타났다. 이러한 FEM 해석결과는 밸브의 Part 1, Part 2, Part 3에 작용하는 Von Mises 최대응력 모두가 황동소재 C3604의 항복강도 대비 9.2~15.5% 수준으로 대단히 낮은 값을 나타내고 있다. 이것은 기존의 LP가스 용기용 밸브의 두께가 지나치게 과도한 설계를 하였다는 것을 의미한다. 따라서, 밸브의 Part 1과 Part 2 지역의 두께는 황동밸브의 경량화 차원에서 얇게 설계하는 것이 바람직하다. 반면에 Part 3 지역의 두께는 기존의 밸브 두께처럼 두껍게 설계하여 높은 체결토크에도 안전한 강도를 유지하는 것이 좋다.

Thickness Effect on the Structural Durability of a Bileaflet Mechanical Heart Valve

  • Kwon, Young-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.5-12
    • /
    • 2003
  • This paper discusses about the thickness effects on the structural durability of a bileaflet mechanical heart valve (MHV). In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis for the deformed leaflet are required sequentially and simultaneously. Fluid forces computed in the fluid mechanics analysis on the blood flow are used in the kinetodynamics analysis for the leaflet motion. Thereafter, the structural mechanics analysis for the deformed leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet becomes thinner and thinner.

응력과 변형을 최소화하기 위한 단엽식 고분자 판막의 지지대 위치에 관한 연구 (A Study on the Location of Supporting Members in Monoleaflet Polymer Valve to Minimize Stress and Deformation)

  • 이성욱;심재준;한동섭;한근조;김태형
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.156-163
    • /
    • 2005
  • A monoleaflet polymer artificial heart valve showed the remarkable improvement in pressure drop compared with other types of artificial valve. So, in this study we designed a monoleaflet polymer artificial valve with two supporting members to minimize the deformation and bending stress of the valve with respect to the variation of the gap between two supporting members using nonlinear contact analysis. The marginal valve thickness was also predicted in accordance with the relationship between the thickness and horizontal displacement in order to prevent the dislocation of the valve tip from the frame wall.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구 (A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.91-96
    • /
    • 2007
  • 수계소화시스템 버터플라이 밸브의 성능해석에 대한 연구를 수행하였다. 버터플라이 밸브의 성능해석으로는 토크특성, 압력손실과 캐비테이션을 고찰하였다. 밸브의 토크특성은 토크 이론식에 밸브 디스크의 개도각이 보정되었고, 보정식이 추가되었다. 밸브의 열림각에 대한 압력손실계수는 Carnot 방정식을 응용하여 수식화하였다. 버터플라이 밸브의 토크특성, 압력손실과 캐비테이션은 디스크의 두께와 직경 비에 대해 해석하였다. 캐비테이션은 밸브의 압력손실계수로부터 해석하였다. 압력손실과 캐비테이션 해석은 밸브의 열림각에 대한 두께 비의 변화에 따라 수행하였다. 이들 해석 데이터는 버터플라이 밸브를 개발하는데 필요한 엔지니어링 데이터로 활용하고자 한다.