• Title/Summary/Keyword: Valve Monitoring

Search Result 129, Processing Time 0.028 seconds

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Valve monitoring system design and implementation using an infrared sensor and ZigBee (Zigbee와 적외선 센서를 활용한 밸브 개폐 모니터링 시스템 설계 및 구현)

  • Sim, Hyun;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • The valve device is installed in hazardous areas, such as a chemical plant explosion has been sealed with fire protection device to prevent the risk of explosion. In this paper, due to the explosion-proof devices using external power the device can not be used in infrared sensors and Zigbee sensor valve device by measuring the open degree of valve opening and closing of the danger zone to check whether. Valve opening and closing operation log screen time, we propose a low-power operation monitoring system administrators to manage and control the plant. Develop power control relay board apply an improved algorithm to apply the asynchronous LPL power management. The plant monitoring system and explosion-proof valve opening and closing the valve system with the intelligent device designed and implemented and tested it.

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Realization of Remote Condition Monitoring System for Check Valve (체크밸브의 원격 상태감시 시스템 구현)

  • Lee Seung-Youn;Jeon Jeong-Seob;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.662-668
    • /
    • 2005
  • This paper presents a realization of check valve condition monitoring system based on fault diagnosis algorithm and Fieldbus communication. We first acquired AE(acoustic emission) sensor data at the check valve test loop, extract fault features through the teamed neural network, and send the processed data to a remote site. The overall system has been implemented and experimented results are given to show its effectiveness.

Cavitation Condition Monitoring of Butterfly Valve Using Support Vector Machine (SVM을 이용한 버터플라이 밸브의 캐비테이션 상태감시)

  • 황원우;고명환;양보석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur. resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic interest and is very importance in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals that are acquired from butterfly valves in the pumping stations and compared the classification success rate with those of self-organizing feature map neural network.

Guidelines for Transcatheter Aortic Valve Replacement in Korea: Past Obstacles and Future Perspectives

  • Choo, Suk Jung;Shinn, Sung Ho;Kim, Kyung Hwan;Kim, Wook Sung;Oh, Sam-Sae;Lee, Sak
    • Journal of Chest Surgery
    • /
    • v.51 no.4
    • /
    • pp.231-240
    • /
    • 2018
  • Background: Analyses of the efficacy and safety of transcatheter aortic valve replacement (TAVR) in most countries have been based on outcomes obtained in accordance with national practice guidelines and monitoring protocols. The purpose of this study is to share our experience regarding the process for establishing guidelines and monitoring protocols for the use of TAVR in Korea, in the hopes that it may be helpful to others undergoing a similar process in their own country. Methods: The Korean guidelines for TAVR were established on June 1, 2015 in through a tri-party agreement involving the Department of Health and Welfare, the Korean Society of Thoracic and Cardiovascular Surgery and the Korean Society of Cardiology. We agreed to monitor the guidelines transparently and to exchange opinions regarding amendments or continuation of its contents after 3 years of monitoring. Results: The monitoring meetings were not held as regularly as agreed, and monitoring was also made difficult by insufficient and incomplete data. Nevertheless, during the meetings, measures to improve the monitoring process were discussed, and accordingly, an agreement was made to continue the monitoring process, with the aim of completing data collection by 2018. Conclusion: Compliance with guidelines is critical for assessing the efficacy and safety of TAVR. Moreover, the TAVR monitoring process must be properly conducted for an accurate evaluation to be made. Any country planning to introduce TAVR may encounter difficulties with regards to the optimal initiation strategy and subsequent monitoring. Nevertheless, continued efforts should be made to persuade the government and the corresponding medical societies to facilitate the optimal application of TAVR.

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

Realization of Check Valve Condition Monitoring system using AE sensor (AE 센서를 이용한 Check Valve 상태감시 시스템 구현)

  • Jeon, Jeong-Seob;Lee, Seung-Youn;Beak, Seoung-Mun;Lyou, Joon;Kim, Jeong-Su
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.49-51
    • /
    • 2004
  • This paper presents a realization of fault detection algorithm and Fieldbus based communication for condition monitoring of check valve. We first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, extract fault features through the learned Neural network, and send the processed data to a remote site. The overall system has been implemented and experimental results are given to show its effectiveness.

  • PDF

Realization of Communication and Sensor Signal Processing Technique for Condition Monitoring of Check Valve (Check Valve 상태감시를 위한 통신 및 센서신호처리 기능 구현)

  • Jeon, Jeong-Seop;Jo, Jae-Geun;Kim, Jeong-Su;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a realization of sensor signal processing(noise filtering) and Fieldbus based communication for condition monitoring of check valve. we first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, and their frequencies were analyzed to find the informative band. To reject background noises, bandpass filters have been designed. Also, to send the processed data to a remote site, wired communication facility has been realized via DeviceNet.

  • PDF