• 제목/요약/키워드: Valve Design

검색결과 1,167건 처리시간 0.026초

Optimal Design and Development of Electromagnetic Linear Actuator for Mass Flow Controller

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we constructed the analytic model of control valve as a function of electric and geometric parameters, and analyzed the influence of the design parameters on the dynamic characteristics. For improving the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design aims to minimize the response time and maximize force efficiency. By this procedure, control valve can be designed to have fast response in motion.

사판식 피스톤 펌프의 밸브 플레이트 설계와 예압에 따른 맥동 (Pulsation According to Pre-Compression Sections and Valve Plate Design for a Swash Plate Type Piston Pump)

  • 사진웅;정원지;배준형;이정민
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.89-95
    • /
    • 2016
  • This study investigated the design factors of the opening area in order to consider the kinematic stability of a valve plate, conducting an analysis of the reduction effects of pressure pulsation and flow ripple depending on the design factors, using the $SimulationX^{(R)}$ (Germany) hydraulic analysis program. Further, we performed a structure analysis to confirm the kinematic stability of the valve plate in a swash plate type piston pump, and analyzed the effects of pulsation on a 1-step V-type notch, 2-step V-type notch, and 2-step U-type notch to determine the effects of pulsation reduction. Finally, we show the effectiveness of our proposed design of the pre-compression sections on a valve plate in terms of low pulsation by using the hydraulic analysis program, $SimulationX^{(R)}$.

흡기포트 및 밸브 형상에 따른 정상 유동 특성 (Numerical analysis of flow characteristics with intake port and valve design)

  • 이상진;김성철;김득상;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

CFD 해석을 이용한 판형 체크 밸브에 대한 스프링 강성의 설계 기준 (Design Criteria of Spring Stiffness for Pan Check Valve Using CFD Analysis)

  • 박주용;백석흠;강정호
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.49-55
    • /
    • 2014
  • This paper examines the effects of spring characteristics and stiffness in relation to the characteristics of hydrodynamic force. Spring forces and stiffness determine the performance of this type of pan check valve and have an effect on the overall operation. The hydraulic efficiency of the pan check valve is relatively low compared to that of a common check valve. However, a pan check valve is structurally more stable than a common check valve. We implemented the optimum design to increase the flow rate and to resolve the suppression of the pressure drop according to the extent of the compression of the spring. From the results of a flow analysis, we demonstrate spring stiffness design criteria depending on the extent of the compression of the spring of pan check valve acting on the fluid at the inlet 1 MPa pressure.

적층형 압전밸브의 설계, 제작 및 특성 (Design, Fabrication and Characteristics of a MCA Valve)

  • 정귀상;김재민;윤석진;정순종;송재성
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

PFA 라이닝 플러그 밸브 설계를 위한 밸브 본체의 응력 시뮬레이션 (A Study on the Stress Simulation for the Body Design of a PFA-lined Plug Valve)

  • 강신한
    • 한국산학기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.500-506
    • /
    • 2009
  • 본 논문은 주요 부위에 대한 정적음력 시뮬레이션을 통해 PFA 라이닝 플러그밸브 본체의 설계자를 지원하는 것을 주된 목표로 한다. CAD 작업을 통해 생성된 형상 모델을 스텝(step)파일로 변환하여 해석작업에 사용한다. 전문적인 해석경험이 없는 밸브 생산업체의 설계자가 형상 모델에 대한 인장, 굽힘, 비틀림 모멘트 등을 계산하는 과정을 이해함으로써 구조적 취약점을 사전에 파악하고, 제품에 반영하여 제품 신뢰도 및 설계효율 증대에 기여할 수 있는 기본적인 방안을 제시하고자 하였다.

유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발 (A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator)

  • 윤영환;장주섭;최명진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

3/2 WAY 공압밸브의 유동-구조적 특성을 고려한 최적설계 (DESIGN OPTIMIZATION OF AN INDUSTRIAL 3/2 WAY PNEUMATIC VALVE CONSIDERING FLOW-STRUCTURE CHARACTERISTICS)

  • 양설민;백석흠;김태우;정일선;강상모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.605-607
    • /
    • 2011
  • A Study on the flow-structure characteristics of a 3/2 way pneumatic valve is essential for optimizing the performance of ship engines. It is important for the valve to have desirable safety factor am reduced weight from the safety and economic point of view. In this study, we capture flow-structure characteristics of 3/2 way pneumatic valve. This is optimized based on the proper design criteria. The air at a pressure of 30 bar is the working fluid which is made to fill in the tack in short time. This time is defined as the filling time. The flow and structure analysis is performed for three cases under maximum stress and safety factor. In optimum design, considering the flow-structure characteristics, we model twenty seven cases by using DOE(design of experiments) method Here, analysis for each cases is performed and then metamodels are created We obtain optimized parameters and then analysis is repeated to compare with the initial model. Finally, the feasibility of the optimum design is verified.

  • PDF

다단-포머를 이용한 오토트랜스 미션용 솔레노이드 밸브 공정설계 및 유한요소해석 (Finite Element Analysis and Process Planning about the Auto Transmission Solenoid Valve using of Multi-Former)

  • 박철우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.97-103
    • /
    • 2009
  • The process design of forward Extrusion and Upsetting of Axi-symmetric part has been studied in this paper. During the cold forging product; auto transmission Solenoid Valve part, the defects such as folding and under-fill can be appeared by the improperly controlled metal flow. In this study, to reduce the folding and under-fill the design of experiments has been used to find out the significant design variables in the design of forging process. This paper deals with an Process Planning with which designer can determine operation sequences even after only a little experience in Process Planning of Multi-Former products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge-base consisting of design rules is built. Based on the systematic procedure of process sequence design, the forming operation of cold forged auto transmission Solenoid Valve part is analyzed by the commercial Finite Element program, DEFORM/2D.

디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계 (Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF