Due to the improvement of modern information technologies, sharing stock information among the supply chain members is a common practice nowadays. Many companies are planning to adopt the information systems to possess the real-time shared stock information. Thus, it is needed to quantify the value of shared stock information. The purpose of this paper is to evaluate the value of the shared stock information for two-echelon distribution systems. Existing reorder policies can be classified into installation stock policies and echelon stock policies. Since installation stock policies do not utilize the shared stock information, and both classes of policies may show poor performances for distribution systems, we cannot evaluate the value of the shared stock information with the existing policies. Thus, we provide a new type of reorder policy, named order risk policy. We define the order risk using marginal analysis, and prove the optimality. Through computational experiment that compares the order risk policy with the existing policies, it is shown that a significant cost reduction is achieved with the effective utilization of the shared stock information. We also show the effect of the system characteristics on the value of the shared stock information.
Journal of the Korean Data and Information Science Society
/
v.17
no.4
/
pp.1099-1106
/
2006
This study is an analysis of the stock trading value in terms of investor types in the Korean stock market for recent 12 years. We examined the characteristics in stock trading value variation according to each investor type and the interactive relationship in the trading value between types of investors. The results show that the trading value scale of every investor type increases overall while the proportion of the trading value by each investor type in the market exhibits variation. In addition, a statistically significant interactive relationship in the trading value between types of investors exists: the correlations are formed differently before and after events which largely influence the stock market.
Purpose: Research on spin-off and treasury stock is necessary because the market has realized that this can be utilized for major shareholder private interest. Considering the unique characteristic of a spin-off and treasury stock in the Korean stock market, this study contributes to the literature by examining the effects on shareholder value in the Korean distribution industry. Research design, data, and methodology: The present study investigates literature, analyst reports, and news articles to examine the spin-off process and analyze how treasury stock magic happens. Results: Setting the exchange ratio favoring Spin-Co in the spin-off is the leading cause for reducing the minor shareholders' value. Moreover, treating treasury stock as an asset is also problematic, allowing the allocation of Spin-Co shares. This leads to an increase in the major shareholder controls of Spin-Co without any contribution from the major shareholders. Therefore, the exchange ratio should be calculated reasonably, and treasury stock from the stock repurchase should be treated as stock retirement. Conclusion: By analyzing the spin-off and how treasury stock magic occurs, this study provides recommendations to improve shareholder value. Moreover, it contributes to the maturation of the Korean capital market by promoting a discussion on the revision of spin-off and treasury stock.
The Journal of Asian Finance, Economics and Business
/
v.8
no.7
/
pp.423-431
/
2021
This research (1) examines the effect of stock ownership structure on capital structure; (2) explains the effect of stock ownership structure on corporate value; and (3) investigates the influence of capital structure on corporate value. This research is categorized as a quantitative research, which is directed to test various theories. In this study, the population of all consumption companies listed on the Indonesia Stock Exchange (IDX) consist of 38 companies. Population data in this study are all consumption companies, which have gone public in the period from 2010 to 2015. In this study, given the objectives and problem formulation and hypothesis, the analysis method used is Generalized Structural Component Analysis (GSCA). Ownership structure has a significant effect on capital structure; ownership structure has no significant effect on corporate value; capital structure has a significant effect on corporate value; corporate value has a significant effect on capital structure. Previous research found different results. Some researchers found a positive relationship and other researchers found a negative relationship, and there are studies that found both significant and non-significant effects. The inconsistency of previous research results prompted the researchers to examine the effect of ownership structure on capital structure and corporate value.
Intangible Assets are more important determinants of firm value than others in a digital information-based economy(Lev, 2001). Prior research reveals that investments in intangible assets such as R&D and advertising expenditures are associated with firm value. This paper examines the effects of the corporate investments in the information technologies(IT) on stock return and economic goodwill. The sample consists of 152 firms listed on the Korean stock market in 2002. To test hypothesis We employed multiple regression models. Results are as follows; First, IT environment, IT process, and IT human resource are positively associated with firm's IT value. Second, firm's IT value is positively correlated with firm's economic goodwill. Third, firm's IT value is positively correlated with firm's stock return. These results suggest that the investments related with IT are effective in cultivating firm's value and Stock investors can make the best use of firm's announcements related with IT value. Thus the authorities concerned need to expand the public announcements related IT value.
The Journal of Asian Finance, Economics and Business
/
v.7
no.8
/
pp.69-76
/
2020
The study examines lagged economic effects of research and development (R&D) investment on the market value of manufacturing firms listed on the Shanghai Stock Exchange or the Shenzhen Stock Exchange in China. This study applies panel data analysis methods to address the following issues: 1) There might be an adjustment lag in the impact of R&D investment on corporate market value, and 2) Unobserved firm effects must be taken into account. The balanced panel data includes a total of 1,462 observations with 34 cross-sections of manufacturing firms listed on Chinese stock markets and with 27 time-specific quarterly periods from 2007 to 2017. The results indicate that the R&D investment of Chinese manufacturing firms tends to yield favorable market value of the firm with some adjustments to time. The results show that R&D investment exhibits a strong positive impact on their market value of manufacturing firms in Chinese stock markets. Moreover, R&D investment has a positive time-lag effect on the market value of the firm. Interestingly, the R&D investment of Chinese manufacturing firms generate a relatively constant positive effect on their market value, supporting the notion that the corresponding returns of R&D investment for such firms yield lagged but added market values.
The Journal of Asian Finance, Economics and Business
/
v.7
no.1
/
pp.29-36
/
2020
Stock price multiple is one of the most well-known equity valuation technique used to forecast equity price. It measures by multiplying "the ratio of stock price to a value driver" by a value driver. The value driver can be earning per share (EPS), sales or other financial measurements. The objective of price multiple technique is to evaluate the value of assets and compare how similar assets are priced in the market. Although stock price multiple technique is common in financial filed, studies on the application of the technique in Thailand is still limited. The present study is conducted to serve three major objectives. The first objective is to apply the technique to measure value of firms in banking sector in the Stock Exchange of Thailand. The second objective is to develop composite price multiple index to forecast equity prices. The third objective is to compare valuation accuracy of different value drivers of price multiple (i.e. EPS, Earnings Growth, Earnings Before Interest Taxes Depreciation and Amortization, Sales, Book Value and Composite Index) in forecasting equity prices. Results indicated that EPS is the most accurate value drivers of price multiple used to forecast equity price of firms in baking sector.
Purpose This study builds a prediction model to find stocks that can reach intrinsic value among KOSPI and KOSDAQ-listed companies to improve the stability and profitability of the stock investment. And investment simulations are conducted to verify whether stock investment performance is improved by comparing the prediction model, random stock selection, and the market indexes. Design/methodology/approach Value investment theory and machine learning techniques are applied to build the model. Various experiments find conditions such as the algorithm with the best predictive performance, learning period, and intrinsic value-reaching period. This study selects stocks through the prediction model learned with inventive variables, does not limit the holding period after buying to reach the intrinsic value of the stocks, and targets all KOSPI and KOSDAQ companies. The stock and financial data are collected for 21 years (2001-2021). Findings As a result of the experiment, using the random forest technique, the prediction model's performance was the best with one year of learning period and within one year of the intrinsic value reaching period. As a result of the investment simulation, the cumulative return of the prediction model was up to 1.68 times higher than the random stock selection and 17 times higher than the KOSPI index. The usefulness of the prediction model was confirmed in that the number of intrinsic values reaching the predicted stock was up to 70% higher than the random selection.
Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.
Purpose - This paper's aim is to investigate whether or not gross profitability explains the cross-sectional variation of the stock returns in the Korean stock market. Gross profitability is an alternative profitability measure proposed by Novy-Marx in 2013 to predict cross-sectional variation of stock returns in the US. He shows that the gross profitability adds explanatory power to the Fama-French 3 factor model. Interestingly, gross profitability is negatively correlated with the book-to-market ratio. By confirming the gross profitability premium in the Korean stock market, we may provide some implications regarding the well-known value premium. In addition, our empirical results may provide opportunities for the fund distribution industry to promote brand new styles of funds. Research design, data, and methodology - For our empirical analysis, we collect monthly market prices of all the companies listed on the Korea Composite Stock Price Index (KOSPI) of the Korea Exchanges (KRX). Our sample period covers July1994 to December2014. The data from the company financial statementsare provided by the financial information company WISEfn. First, using Fama-Macbeth cross-sectional regression, we investigate the relation between gross profitability and stock return performance. For robustness in analyzing the performance of the gross profitability strategy, we consider value weighted portfolio returns as well as equally weighted portfolio returns. Next, using Fama-French 3 factor models, we examine whether or not the gross profitability strategy generates excess returns when firmsize and the book-to-market ratio are controlled. Finally, we analyze the effect of firm size and the book-to-market ratio on the gross profitability strategy. Results - First, through the Fama-MacBeth cross-sectional regression, we show that gross profitability has almost the same explanatory power as the book-to-market ratio in explaining the cross-sectional variation of the Korean stock market. Second, we find evidence that gross profitability is a statistically significant variable for explaining cross-sectional stock returns when the size and the value effect are controlled. Third, we show that gross profitability, which is positively correlated with stock returns and firm size, is negatively correlated with the book-to-market ratio. From the perspective of portfolio management, our results imply that since the gross profitability strategy is a distinctive growth strategy, value strategies can be improved by hedging with the gross profitability strategy. Conclusions - Our empirical results confirm the existence of a gross profitability premium in the Korean stock market. From the perspective of the fund distribution industry, the gross profitability portfolio is worthy of attention. Since the value strategy portfolio returns are negatively correlated with the gross profitability strategy portfolio returns, by mixing both portfolios, investors could be better off without additional risk. However, the profitable firms are dissimilar from the value firms (high book-to-market ratio firms); therefore, an alternative factor model including gross profitability may help us understand the economic implications of the well-known anomalies such as value premium, momentum, and low volatility. We reserve these topics for future research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.