• Title/Summary/Keyword: Value at Risk(VaR)

Search Result 65, Processing Time 0.021 seconds

Vector at Risk and alternative Value at Risk (Vector at Risk와 대안적인 VaR)

  • Honga, C.S.;Han, S.J.;Lee, G.P.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.689-697
    • /
    • 2016
  • The most useful method for financial market risk management may be Value at Risk (VaR) which estimates the maximum loss amount statistically. The VaR is used as a risk measure for one industry. Many real cases estimate VaRs for many industries or nationwide industries; consequently, it is necessary to estimate the VaR for multivariate distributions when a specific portfolio is established. In this paper, the multivariate quantile vector is proposed to estimate VaR for multivariate distribution, and the Vector at Risk for multivariate space is defined based on the quantile vector. When a weight vector for a specific portfolio is given, one point among Vector at Risk could be found as the best VaR which is called as an alternative VaR. The alternative VaR proposed in this work is compared with the VaR of Morgan with bivariate and trivariate examples; in addition, some properties of the alternative VaR are also explored.

Combination of Value-at-Risk Models with Support Vector Machine (서포트벡터기계를 이용한 VaR 모형의 결합)

  • Kim, Yong-Tae;Shim, Joo-Yong;Lee, Jang-Taek;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.791-801
    • /
    • 2009
  • Value-at-Risk(VaR) has been used as an important tool to measure the market risk. However, the selection of the VaR models is controversial. This paper proposes VaR forecast combinations using support vector machine quantile regression instead of selecting a single model out of historical simulation and GARCH.

Determination Conversion Weight of Convertible Bonds Using Mean/Value-at-Risk Optimization Models (평균/VaR 최적화 모형에 의한 전환사채 주식전환 비중 결정)

  • Park, Koohyun
    • Korean Management Science Review
    • /
    • v.30 no.3
    • /
    • pp.55-70
    • /
    • 2013
  • In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.

Comparison of semiparametric methods to estimate VaR and ES (조건부 Value-at-Risk와 Expected Shortfall 추정을 위한 준모수적 방법들의 비교 연구)

  • Kim, Minjo;Lee, Sangyeol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.171-180
    • /
    • 2016
  • Basel committee suggests using Value-at-Risk (VaR) and expected shortfall (ES) as a measurement for market risk. Various estimation methods of VaR and ES have been studied in the literature. This paper compares semi-parametric methods, such as conditional autoregressive value at risk (CAViaR) and conditional autoregressive expectile (CARE) methods, and a Gaussian quasi-maximum likelihood estimator (QMLE)-based method through back-testing methods. We use unconditional coverage (UC) and conditional coverage (CC) tests for VaR, and a bootstrap test for ES to check the adequacy. A real data analysis is conducted for S&P 500 index and Hyundai Motor Co. stock price index data sets.

Properties of alternative VaR for multivariate normal distributions (다변량 정규분포에서 대안적인 VaR의 특성)

  • Hong, Chong Sun;Lee, Gi Pum
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1453-1463
    • /
    • 2016
  • The most useful financial risk measure may be VaR (Value at Risk) which estimates the maximum loss amount statistically. The VaR tends to be estimated in many industries by using transformed univariate risk including variance-covariance matrix and a specific portfolio. Hong et al. (2016) are defined the Vector at Risk based on the multivariate quantile vector. When a specific portfolio is given, one point among Vector at Risk is founded as the best VaR which is called as an alternative VaR (AVaR). In this work, AVaRs have been investigated for multivariate normal distributions with many kinds of variance-covariance matrix and various portfolio weight vectors, and compared with VaRs. It has been found that the AVaR has smaller values than VaR. Some properties of AVaR are derived and discussed with these characteristics.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

Estimating VaR(Value-at-Risk) of non-listed and newly listed companies using Case Based Reasoning (사례기반추론을 이용한 비상장기업 및 신규상장기업의 VaR 추정)

  • 최경덕;노승종
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Estimating the Value-at-Risk (VaR) of a non-listed or newly listed company in stock market is impossible due to lack of stock exchange data. This study employes Case-Based Reasoning (CBR) for estimating VaR's of those companies. CBR enables us to identify and select existing companies that have similar financial and non-financial characteristics to the unlisted target company. The VaR's of those selected companies can give estimates of VaR for the target company. We developed a system called VAS-CBR and showed how well the system estimates the VaR's of unlisted companies.

  • PDF

Estimating the Credit Value-at-Risk of Korean Property and Casuality Insurers

  • Hong, Yeon-Woong;Suh, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1027-1036
    • /
    • 2008
  • Value at Risk(VaR) is a fundamental tool for managing market risks. It measures the worst loss to be expected of a portfolio over a given time horizon under normal market conditions at a given confidence level. Calculation of VaR frequently involves estimating the volatility of return processes and quantiles of standardized returns. In this paper, we introduced and applied the CreditMetrics model to estimate the credit VaR of Korean Property and Casuality insurers.

  • PDF

Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models (장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정)

  • Oh, Jeongjun;Kim, Sunggon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.163-185
    • /
    • 2013
  • In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.

Conditional Value-at-Risk Optimization for Conversion of Convertible Bonds (전환사채 주식전환을 위한 조건부 VaR 최적화)

  • Park, Koo-Hyun;Shim, Eun-Tak
    • Korean Management Science Review
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2011
  • In this study we suggested two optimization models to answer a question from an investor standpoint : how many convertible bonds should one convert, and how many keep? One model minimizes certain risk to the minimum required expected return, the other maximizes the expected return subject to the maximum acceptable risk. In comparison with Markowitz portfolio models, which use the variance of return, our models used Conditional Value-at-Risk(CVaR) for risk measurement. As a coherent measurement, CVaR overcomes the shortcomings of Value-at-Risk(VaR). But there are still difficulties in solving CVaR including optimization models. For this reason, we adopted Rockafellar and Uryasev's[18, 19] approach. Then we could approximate the models as linear programming problems with scenarios. We also suggested to extend the models with credit risk, and applied examples of our models to Hynix 207CB, a convertible bond issued by the global semiconductor company Hynix.