A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.
Journal of The Korean Society of Grassland and Forage Science
/
v.34
no.3
/
pp.214-218
/
2014
This study was conducted to assess the feasibility of near-infrared reflectance spectroscopy (NIRS) as a rapid and reliable method for the estimation of crude protein (CP) fractions in forage legume mixtures (sudangrass and pea mixture, and kidney bean and potato mixture). A total of 178 samples were collected and their spectral reflectance obtained in the range of 400~2,500 nm. Of these, 50 samples were selected for calibration and validation, and 35 samples were used for calibration of the data set, and the modified partial least square regression (MPLSR) analysis was performed. The correlation coefficient ($r^2$) and the standard error of cross-validation (SECV) of the calibration models in the CP fractions, A, B1, B2, B3, and C, were 0.94 (1.05), 0.92 (0.74), 0.96 (0.95), 0.91 (0.42), and 0.83 (0.38), respectively. Fifteen samples were used for equation validation, and the $r^2$ and the standard error of prediction (SEP) were 0.87 (1.45), 0.91 (0.49), 0.94 (1.13), 0.36 (0.96), and 0.74 (0.67), respectively. This study showed that NIRS could be an effective tool for the rapid and precise estimation of CP fractions in forage legume mixtures.
Suppose we observe a set of data (X$_1$,Y$_1$(, …, (X$_{n}$,Y$_{n}$) and use the Nadaraya-Watson regression estimator to estimate m(x)=E(Y│X=x). in this article bandwidth selection problem for the Nadaraya-Watson regression estimator is investigated. In particular cross validation method based on average square error(ASE) is considered. Theoretical results here include a central limit theorem that quantifies convergence rates of the bandwidth selector.tor.
We present formula for detecting influential observations on the smoothing parameter in smoothing spline. Further, we express them as functions of basic building blocks such as residuals and leverage, and compare it with the local influence approach by Thomas (1991). An example based on a real data set is given.
Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.9
/
pp.2052-2072
/
2012
Access control is an essential security component in protecting sensitive data and services from unauthorized access to the resources in mission-critical Cyber-Physical Systems (CPSs). CPSs are different from conventional information processing systems in such that they involve interactions between the cyber world and the physical world. Therefore, existing access control models cannot be used directly and even become disabled in an emergency situation. This paper proposes an adaptive Access Control model for Emergences (AC4E) for mission-critical CPSs. The principal aim of AC4E is to control the criticalities in these systems by executing corresponding responsive actions. AC4E not only provides the ability to control access to data and services in normal situations, but also grants the correct set of access privileges, at the correct time, to the correct set of subjects in emergency situations. It can facilitate adaptively responsive actions altering the privileges to specific subjects in a proactive manner without the need for any explicit access requests. A semiformal validation of the AC4E model is presented, with respect to responsiveness, correctness, safety, non-repudiation and concurrency, respectively. Then a case study is given to demonstrate how the AC4E model detects, responds, and controls the emergency events for a typical CPS adaptively in a proactive manner. Eventually, a wide set of simulations and performance comparisons of the proposed AC4E model are presented.
Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
Computers and Concrete
/
v.21
no.4
/
pp.407-417
/
2018
Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
2000.11c
/
pp.560-568
/
2000
The aims of this research were to investigate the preprocessing effect of spectrum data on prediction performance and to develop a robust model to predict SSC in intact apple. Spectrum data of 320 Fuji apples were measured with the on-line transmittance measurement system at the wavelength range of 550∼1100nm. Preprocess methods adopted for the tests were Savitzky Golay, MSC, SNV, first derivative and OSC. Several combinations of those methods were applied to the raw spectrum data set to investigate the relative effect of each method on the performance of the calibration model. PLS method was used to regress the preprocessed data set and the SSCs of samples, and the cross-validation was to select the optimal number of PLS factors. Smoothing and scattering corection were essential in increasing the prediction performance of PLS regression model and the OSC contributed to reduction of the number of PLS factors. The first derivative resulted in unfavorable effect on the prediction performance. MSC and SNV showed similar effect. A robust calibration model could be developed by the preprocessing combination of Savitzky Golay smoothing, MSC and OSC, which resulted in SEP= 0.507, bias=0.032 and R$^2$=0.8823.
Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
Proceedings of the Korean Society for Bioinformatics Conference
/
2004.11a
/
pp.158-166
/
2004
Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.
International Journal of Advanced Culture Technology
/
v.10
no.2
/
pp.300-306
/
2022
Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.