• 제목/요약/키워드: Validation Method

검색결과 3,126건 처리시간 0.034초

Validation of time domain seakeeping codes for a destroyer hull form operating in steep stern-quartering seas

  • Van Walree, Frans;Carette, Nicolas F.A.J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.9-19
    • /
    • 2011
  • The paper describes the validation of two time domain methods to simulate the behaviour of a destroyer operating in steep, stern-quartering seas. The significance of deck-edge immersion and water on deck on the capsize risk is shown as well as the necessity to account for the wave disturbances caused by the ship. A method is described to reconstruct experimental wave trains and finally two deterministic validation cases are shown.

유한요소법을 이용한 전차선로-팬터그래프 동적상호작용 해석 프로그램의 개발 및 검증 (Development and Validation of a Catenary-Pantograph Dynamic Simulation By Using the Finite Element Method)

  • 조용현;강윤석;이기원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.593-605
    • /
    • 2006
  • We have developed a catenary-pantograph dynamic simulation program by using the finite element method and verified the accuracy according to the EN 50319. During the validation process, we have reviewed which the time integration methods is proper for this application. among the Newmark method, Wilson theta method and alpha method. We conclude that the alpha method is the best in terms of computation time and accuracy.

  • PDF

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • 제6권3호
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

Analytical Method Validation for Bioequivalence Test : A Practical Approach

  • Kim, Chong-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.158-169
    • /
    • 2002
  • 본 발표에서는 약물 분석 중 특히 생체 매질을 이용하여 임상약리학적 연구나 생체 내 이용률(bioavailability) 연구, 생물학적 동등성(bioequivalence) 연구를 하는 경우의 분석법 검증(bioanalytical method validation)에 대하여 상세히 설명하고자 한다.

  • PDF

CROSS- VALIDATION OF LANDSLIDE SUSCEPTIBILITY MAPPING IN KOREA

  • LEE SARO
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.291-293
    • /
    • 2004
  • The aim of this study was to cross-validate a spatial probabilistic model of landslide likelihood ratios at Boun, Janghung and Yongin, in Korea, using a Geographic Information System (GIS). Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and field surveys. Maps of the topography, soil type, forest cover, lineaments and land cover were constructed from the spatial data sets. The 14 factors that influence landslide occurrence were extracted from the database and the likelihood ratio of each factor was computed. 'Landslide susceptibility maps were drawn for these three areas using likelihood ratios derived not only from the data for that area but also using the likelihood ratios calculated from each of the other two areas (nine maps in all) as a cross-check of the validity of the method For validation and cross-validation, the results of the analyses were compared, in each study area, with actual landslide locations. The validation and cross-validation of the results showed satisfactory agreement between the susceptibility map and the existing landslide locations.

  • PDF

Validation Measures of Bicluster Solutions

  • Lee, Young-Rok;Lee, Jeong-Hwa;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제8권2호
    • /
    • pp.101-108
    • /
    • 2009
  • Biclustering is a method to extract subsets of objects and features from a dataset which are characterized in some way. In contrast to traditional clustering algorithms which group objects similar in a whole feature set, biclustering methods find groups of objects which have similar values or patterns in some features. Both in clustering and biclustering, validating how much the result is informative or reliable is a very important task. Whereas validation methods of cluster solutions have been studied actively, there are only few measures to validate bicluster solutions. Furthermore, the existing validation methods of bicluster solutions have some critical problems to be used in general cases. In this paper, we review several well-known validation measures for cluster and bicluster solutions and discuss their limitations. Then, we propose several improved validation indices as modified versions of existing ones.

실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류 (Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments)

  • 정광본;최미정;김명섭;원영준;홍원기
    • 한국통신학회논문지
    • /
    • 제33권8B호
    • /
    • pp.707-718
    • /
    • 2008
  • Traffic classification의 방법은 동적으로 변하는 application의 변화에 대처하기 위하여 페이로드나 port를 기반으로 하는 것에서 ML 알고리즘을 기반으로 하는 것으로 변하여 가고 있다. 그러나 현재의 ML 알고리즘을 이용한 traffic classification 연구는 offline 환경에 맞추어 진행되고 있다. 특히, 현재의 기존 연구들은 testing 방법으로 cross validation을 이용하여 traffic classification을 수행하고 있으며, traffic flow를 기반으로 classification 결과를 제시하고 있다. 본 논문에서는 testing방법으로 cross validation과 split validation을 이용했을 때, traffic classification의 정확도 결과를 비교한다. 또한 바이트를 기반으로 한 classification의 결과와 flow를 기반으로 한 classification의 결과를 비교해 본다. 본 논문에서는 J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, NaiveBayes와 같은 ML 알고리즘과 다양한 feature set을 이용하여 트래픽을 분류한다. 그리고 split validation을 이용한 traffic classification에 적합한 최적의 ML 알고리즘과 feature set을 제시한다.

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

PRECONDITIONED GL-CGLS METHOD USING REGULARIZATION PARAMETERS CHOSEN FROM THE GLOBAL GENERALIZED CROSS VALIDATION

  • Oh, SeYoung;Kwon, SunJoo
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.675-688
    • /
    • 2014
  • In this paper, we present an efficient way to determine a suitable value of the regularization parameter using the global generalized cross validation and analyze the experimental results from preconditioned global conjugate gradient linear least squares(Gl-CGLS) method in solving image deblurring problems. Preconditioned Gl-CGLS solves general linear systems with multiple right-hand sides. It has been shown in [10] that this method can be effectively applied to image deblurring problems. The regularization parameter, chosen from the global generalized cross validation, with preconditioned Gl-CGLS method can give better reconstructions of the true image than other parameters considered in this study.