• Title/Summary/Keyword: Vacuum arc

Search Result 324, Processing Time 0.027 seconds

Design of High Speed Motor for Surface Mounted Permanent Magnet (표면부착형 영구자석 초고속 회전기의 설계)

  • Song, Jae-Hong;Cha, Young-Bum;Yang, Hyun-Sub;Lee, Jeong-Jong;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.939-941
    • /
    • 2003
  • High Speed permanent magnet machines are currently being developed for a number of applications including gas turbine power plants, air conditioning systems, machine tools, gas pumps, high performance vacuum pumps, flywheel energy storage systems, aircraft fuel pumps, and so on. Using a high-speed machine eliminates the necessity of the mechanical gearbox and could certainly increase the system efficiency and reduce the total cost. In addition, a high-speed machine has the advantage of small dimension and low weight, i.e. low weight to power and volume to power ratio. This paper presents a review of some important applications (mostly still under development) where high-speed machines arc used, highlighting the advantages of the technology in each case.

  • PDF

Electrochemically Fromed Nanotube Shape on Ternary Ti Alloy with Hf Content

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.106-106
    • /
    • 2015
  • In this study, we investigated electrochemically formed nanotube shape on ternary Ti-25Ta-xHf alloys with Hf contents. Ti-25Ta-xHf (x=0~15 wt.%) alloys were manufactured by vacuum arc-melting furnace. The obtained ingots were homogenized in an argon atmosphere at $1050^{\circ}C$ for 2h and then water quenching. The specimens were cut from ingots to 4 mm thickness and first ground and polished using SiC paper (grades from #100 to #2000). The anodization treatments on Ti-25Nb-xHf alloys were carried out at room temperature for experiments. The formation of nanotubular film was conducted by electrochemical method in mixed electrolytes with 1 M $H_3PO_4$ + 0.8 wt. % NaF at 30 V for 2 h. The morphologies of nanotube depended on the Hf content in Ti-25Ta-xHf ternary system.

  • PDF

Study of coating process for mass production of non-hydrogen Diamond like carbon films using filtered vacuum arc method (자장 여과 진공 아크법으로 증착되는 수소 없는 DLC 막의 양산을 위한 코팅 공정 연구)

  • Kim, Jong-Guk;Kim, Gi-Taek;Kim, Dong-Sik;Gang, Yong-Jin;Lee, Seong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.72-72
    • /
    • 2015
  • 최근 비철소재 가공용 공구의 이형성 향상 코팅 및 자동차 부품의 고온 환경에서 사용할 수 있는 코팅으로 유망한 수소가 없는 비정질 다이아몬드 카본 막 (Non-Hydrogen Diamond Like Carbon films : ta-C)을 양산할 수 있는 코팅 시스템에 대한 연구 결과를 발표하고자 한다. 본 시스템은 Diamet-600이라고 하며 ta-C의 처리폭은 350 mm, 직경 450 mm 8축 공자전 치구에서 400nm/h의 증착률을 가지며, 막의 경도는 최대 65GPa을 달성하였다.

  • PDF

The heat treatment characteristics of plasma sprayed ZrO$_2$-Y$_2$O$_3$ coatings (플라즈마 용해법에 의한 ZrO$_2$-Y$_2$O$_3$ 피복층의 가열처리효과)

  • 정병근;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 1994
  • The plasma spray process was used to deposit coatings of $ZrO_2$-8wt%Y2O3 powders on mild steel sub-strate, and the characteristics of as-deposited and heat treated coatings have been investigated. Particulary, the variations of porosity, wear resistance, thermal barrier and thermal shock resistance in $ZrO_2$-8wt% $Y_2O_3$coatings after heat treatment under vacuum circumstance have been investigated. The porosity of the coating layer was increased with increased spray distance. In the case of the arc current of 450A and at the spray distance of 50mm, it was obtained the lowest amount of porosity. After heat treatment, the amount of porosity was found to be decreased, and the wear resistance, microhardness and thermal shock resistance were im-proved. However, the thermal barrier was decreased.

  • PDF

Application of Nano-carbons in Field Emission Display (전계방출표시소자에서 나노 카본의 응용)

  • Kim, Kwang-Bok;Song, Yoon-Ho;Hwang, Chi-Sun;Jung, Han-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.76-79
    • /
    • 2003
  • The characteristic of single wall carbon nanotube (SW-CNT) and herringbone nano fiber (HB-CNF) emitters was described. SW-CNT synthesized by arc discharge and HB-CNF prepared by thermal CVD were mixed with binders and conductive materials, and then were formed by screen-printing process. In order to obtain efficient field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNT and CNF emitters. The basic structure of FED was of a diode type through fully vacuum packaging. Also, we proposed a new triode type of field emitter using a mesh gate plate having tapered holes and could achieve the ideal triode properties with no gate leakage currents.

  • PDF

Morphology Observation of Nanostructured Ti-25Ta-xZr Alloys

  • Kim, Hyun-ju;Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.331-331
    • /
    • 2012
  • In this study, we investigated morphology observation of nanostructured Ti-25Ta-xZr alloys. Ti-25Ta-(3wt%~15 wt%) Zr alloys were prepared by a vacuum arc-melting furnace. Formation of nanotubular structure was achieved by an electrochemical method in 1M $H_3PO_4$ electrolytes containing 0.8%wt.% NaF. Nanotube morphology depended on alloying elements.

  • PDF

Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule (지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅)

  • Park, Hyun-Woo;Jeong, Se-Hoon;Kim, Hyun-Young;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.570-574
    • /
    • 2010
  • A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

Tribology Coating Study of Thick DLC (ta-C) Film (DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구)

  • Jang, Young-Jun;Kang, Yong-Jin;Kim, Gi Taek;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

Anti-Corrosion Properties of TiN-Coated Bolt for Application to Nuclear Power Plants Located Near Coastal Areas (해안에 인접한 원자력발전소에 적용하기 위한 체결볼트의 TiN박막 코팅처리를 한 체결볼트의 방식특성)

  • Lee, Su-Been;Lee, Jin-Woo;Park, Soo-Jeong;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.356-360
    • /
    • 2016
  • Recently, the lifetime extension of nuclear power plants has been considered. Thus, it is necessary to consider facility safety management and economic management. However, when the bolts in nuclear power plants are replaced and the turbines of nuclear power plant are disassembled, numerous problems are found in relation to stuck bolts in clamping parts. In order to solve these problems, a hybrid vacuum chamber was first designed and manufactured. It can perform arc ion plating and sputtering, which were used to deposit Ti/TiN on an A913 B7 bolt. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were conducted to determine the composition and characteristics of the bolt, and tests were conducted to determine how long the bolt could endure under various conditions in a nuclear power plant. The SEM and XRD results clearly showed a continual and even coating layer. When this TiN-coated bolt is used in a nuclear power plant, the lifetime can be extended compared to a conventional bolt, but it is necessary to determine what additional properties are required.