• Title/Summary/Keyword: Vacuum Pressure

Search Result 1,609, Processing Time 0.035 seconds

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF

Characteristics of the Low Pressure Plasma

  • Bae, In-Sik;Na, Byeong-Geun;Seol, Yu-Bin;Song, Ho-Hyeon;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.235.2-235.2
    • /
    • 2014
  • Plasma hardly grows in low pressure because of lack of collision. Especially, in extremely low pressure like 1 mTorr, the experiment scale is far larger than mean free path therefore plasma is hardly generated in such low pressure. But low pressure plasma has useful properties like low damage or fine sputtering process because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily and cylindrical geometry is used to help discharge easily. And we changed magnetic field strength to control electron density or temperature. In low pressure, density and temperature behavior is very interesting so its characteristics are examined here.

  • PDF

(주)지에이티

  • 안성환
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.47-47
    • /
    • 2000
  • 당사는 진공 및 반도체 장비용 major components 국산화 개발을 전문으로 하는 회사로서 주로 vacuum과 gas control 부문 개발에 역점을 두고 있습니다. 현재 생산 혹은 차후 개발하고자 하는 제품은 다음과 같다. MFC power supply & Readout unit(GMC 1000, GMC 100A, GMC110A), Vacuum Controller(GVC2000, GVC1000, GVC2002), Throttle valve Controller & Pressure Display unit(GPC3000), MFC 등을 생산/판매하고 있다.

  • PDF

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

The characteristics of suction pressure by throttle opening of the carburetor dummy at steady state (정상상태에서 카뷰레터 더미모델의 스로틀 개도에 따른 압력특성)

  • Cho, Hyoung-Mun;Kim, Byeong-Guk;Choi, Young-Ha;Yoon, Suck-Ju;Han, Jong-Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this paper is to know the characteristics of pressure through a simplified typical carburetor used in small engines at the different throttle opening conditions. The carburetor is the device responsible for creating the right air-fuel mixture according to the different engine operating conditions. It is activated by the static or the dynamic pressure. The carburetor dummy is geometrically similar of LPG brush-cutter engine's diaphragm carburetor and is made of acrylic. Suction system gives body to crankcase vacuum using the vacuum pump and throttle opening conditions are controled by transfer device. Carburetor venturi throat and fuel charging tube diameter is each 20mm, 4.1mm. The result of the work presents an unprecedented phenomenon of suction pressure variation inside the carburetor venturi. It is predicted that these unprecedented pressure variation be caused by minor losses; sudden contraction or expansion, open or partially closed and so on.

  • PDF

Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System (생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성)

  • Jang, Choon-Man;Lee, Jong-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.

Analysis of Soil Vacuum Extraction using Analytical Solution of Groundwater Flow (지하수 흐름의 해석해를 이용한 토양진공추출 해석)

  • Kim, Min-Hwan;Lee, Hak;Han, Dong-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.139-145
    • /
    • 2009
  • An analytical solution of groundwater flow is applied to design soil vacuum extraction for removing volatile organic compounds from the unsaturation zone. The governing equation of gas or vapor flow in porous media is nonlinear in that gas density depends on gas pressure. A linear equation suggested by researcher is similar to that of groundwater flow. The pressure drawdowns of confined and leaky aqufiers are calculated using Massmann's field data, and the pressure drawdowns are compared. A solution of Theis equation calculated by Massmann is modified using GASSOLVE9 program in this paper. The pressure drawdown using Hantush's analytical solution for leaky aquifer also compared to that of Massmann. Hantush's analytical solution gives good approximations to pressure drawdown.

Analysis on characteristics of vacuum preloaded air bearing (진공 예압형 공기베어링의 특성 해석)

  • 김경호;박천홍;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.355-358
    • /
    • 2003
  • This paper presents characteristics of vacuum preloaded porous air bearing. Pressure distribution of a porous pad and vacuum pocket are calculated. And load capacity and stiffness of the bearing are analyzed with various vacuum parameters, that is. clearance height. tube diameter, tube length. pumping speed of vacuum pump, vacuum pocket to porous pad area ratio. From the simulation results, optimum clearance for best performance can be selected adjusting these parameters, especially tube diameter which is the most dominant source.

  • PDF

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.