• Title/Summary/Keyword: Vacuum Hot Pressing

Search Result 78, Processing Time 0.028 seconds

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

Effects of Alloying Elements on the Microstructure and Tensile Properties of Rapidly Solidified Al-Mg Alloys (급속응고한 Al-Mg 합금의 미세조직 및 인장특성에 미치는 첨가원소의 영향)

  • Park, Hyun-Ho;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.356-364
    • /
    • 1997
  • In order to study effects of Cu and Be on the microstructure and tensile properties of rapidly solidified Al-Mg alloys, Al-Mg-Cu-Be alloys have been rapidly solidified by inert gas atomization process. Microstructure of rapidly solidified Al-Mg-Cu-Be powders exhibited refinement and good dispersion of Be particles as increasing of solidification rate. Solidification rate of atomized powders was estimated to be about $5{\times}10^{3{\circ}}C/s$. Inert gas atomized Al-Mg-Cu-Be powders were hot-processed by vacuum hot pressing at $450^{\circ}C$ under 100 MPa and hot extruded with reduction ratio in area of 25: 1 at $450^{\circ}C$. The extruded Al-Mg-Cu-Be powders consisted of recrystallized fine Al grains and homogeneously dispersed fine Be particles, and exhibited improved tensile properties with increase in Cu content. $Al_2CuMg$ compounds precipitated in grain and grain boundaries of Al-Mg-Cu-Be alloys with aging heat treatment after solution treatment. Hardness and tensile properties were improved by increasing Cu content and Be addition. Compared with extruded Al-Mg-Cu powders, the extruded Al-Mg-Cu-Be powders exhibited finer recrystallized grains and improved tensile properties by dispersion hardening of Be and subgrain boundaries pinned by fine Be particles. After aging treatment, hardness and tensile properties were improved due to restricted precipitation by increasing of dislocation density around Be particles in matrix.

  • PDF

A Study on the Micro-mechanical Characteristics of Titanium Metal Matrix Composites (티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil technique. Subsequent micro-mechanical characteristics of the composites are then investigated by means of several experimental methods. The levels of consolidation, together with mechanism based failure processes of the materials have been analyzed by employing a thermo-acoustic emission technique. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the finished products. In industrial applications, both qualitative and quantitative evaluations of the material-mechanical characteristics are particularly important, and therefore must be included in process development. The present paper represents a methodology by which this can be achieved.

Transparent Ceramics for Visible/IR Windows: Processing, Materials and Characterization

  • Jung, Wook Ki;Ma, Ho Jin;Kim, Ha-Neul;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.551-563
    • /
    • 2018
  • Visible and IR windows require a combination of high optical transparency and superior thermal and mechanical properties. Materials, fabrication and characterization of transparent ceramics for visible/IR windows are discussed in this review. The transparent polycrystalline $Y_2O_3$, $Y_2O_3-MgO$ nanocomposites and $MgAl_2O_4$ spinel ceramics are fabricated by advanced ceramic processing and the use of special sintering technologies. Ceramic processing conditions for achieveing fully densified transparent ceramics are strongly dependent on the initial powder characteristics. In addition, appropriate use of sintering technologies, including vacuum sintering, hot-pressing and spark plasama sintering methods, results in outstanding thermal and mechanical properties as well as high optical transparency of the final products. Specifically, the elimination of light scattering factors, including residual pores, second phases and grain boundaries, is a key technique for improving the characteristics of the transparent ceramics. This paper discusses the current research issues related to synthesis methods and sintering processes for yttria-based transparent ceramics and $MgAl_2O_4$ spinel.

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

Phase Transformations and Oxidation Properties of Fe$_{0.98}$Mn$_{0.02}$Si$_2$ Processed by Mechanical Alloying (기계적 합금화법에 의해 제조된 Fe$_{0.98}$Mn$_{0.02}$Si$_2$의 상변태와 산화특성)

  • 심웅식;이동복;어순철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.200-205
    • /
    • 2003
  • Thermoelectric p-type $Fe_{0.98}$ $Mn_{ 0.02}$$Si_2$ bulk specimens have been produced by mechanical alloying and consolidation by vacuum hot pressing. The subsequent isothermal annealing was not able to fully transform the mestastable as -milled powders into the $\beta$ $-FeSi_2$ phase, so that the obtained matrix consisted of not only thermoelectric semiconducting $\beta$-FeSi$_2$ but also some residual, untransformed metallic $\alpha$ $- Fe_2$$Si_{ 5}$ and $\varepsilon$-FeSi mixtures. Interestingly, $\beta$ - $FeSi_2$ was more easily obtained in the low density specimen when compared to the high density specimen. The oxidation at 700 and $800^{\circ}C$ in air led to the phase transformation of the above described iron - silicides and the formation of a thin silica surface layer.

Thermoelectric Properties of Nano Structured $CoSb_3$ Synthesized by Mechanical Alloying

  • Ur, Soon-Chul;Kwon, Joon-Chul;Choi, Moon-Kwan;Kweon, Soon-Yong;Hong, Tae-Whan;Kim, Il-Ho;Lee, Young-Geun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.665-666
    • /
    • 2006
  • Undoped $CoSb_3$ powders were synthesized by mechanical alloying (MA) of elemental powders using a nominal stoichiometric composition. Nano-structured, single-phase skutterudite $CoSb_3$ was successfully produced by vacuum hot pressing (VHP) using MA powders without subsequent annealing. Phase transformations during synthesis were investigated using XRD, and microstructure was observed using SEM and TEM. Thermoelectric properties in terms of Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit(ZT) were systematically measured and compared with the results of analogous studies. Lattice thermal conductivity was reduced owing to increasing phone scattering in nano-structured MA $CoSb_3$, leading to enhancement in the thermoelectric figure of merit. MA associated with VHP technique offers an alternative potential processing route for the process of skutterudite.

  • PDF

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Fabrication and Mechanical Properties of $MoSi_2$ Based Composites ($MoSi_2$ 복합재료의 제조 및 기계적 특성)

  • Park, Yi-Hyun;Lee, Sang-Pill;Lee, Sung-Eun;Jin, Joon-Ok;Kim, Sa-Woong;Lee, Jin-Kyung;Yoon, Han-Ki
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.289-293
    • /
    • 2003
  • This study dealt with the characterization of $MoSi_2$ based composites containing three types of additive materials such as SiC, $NbSi_2\;and\;ZrO_2$ particles have been investigated, based on the detailed examination of their microstructures and fracture surfaces. The effects of reinforcing materials on the high temperature strength of $MoSi_2$ based composites have been also examined. $MoSi_2$ based composites were fabricated by the hot press process under the vacuum atmosphere. The volume fraction of reinforcing materials in the composite system was fixed as 20 %. The microstructures and the mechanical properties of $MoSi_2$ based composites were investigated by means of SEM, EDS, XRD and three point bending test.

  • PDF