• Title/Summary/Keyword: Vacuum Glass

Search Result 758, Processing Time 0.037 seconds

Stress Analysis of the Vacuum glazing according to the Pillar shapes and Arrangements using Finite Element Method (FEM을 이용한 지지대 형상 및 배열에 따른 진공창 유리의 응력해석)

  • Kim, Jae-Kyung;Jeon, Euy-Sik;Kim, Young-Shin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Windows are still the thermally weakest part in considering energy efficiency. The vacuum glazing is considered as a new alternative in terms of energy efficiency. Vacuum glazing are consisting of two separated glass, pillars are support the under and upper glass. Therefore in this paper suggested the pillar shapes and array arrangements method using Finite Element Method and validity were proved by comparing and analyzing with the research that it is announced through the existing experiment. It is considered to solve pillar shapes and arrangement method problem of the vacuum glazing using proposed FEM analysis.

A Study on Performance Test and Fabrication of Vacuum Glazing with Numerical Analysis (수치해석을 통한 진공유리 제작 및 성능실험에 관한 연구)

  • Hwang, Il Sun;Lee, Young Lim
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • For air-tight modern buildings, secondary damage is likely to occur due to condensation in the relatively high heat-transmission windows since water vapor is not easy to discharge. Therefore, in this study, condensation performance of vacuum glazing was numerically analysed, compared with that of ordinary glass and confirmed experimentally by three sheets of vacuum glazing manufactured. The results show that the heat transmission coefficient of the vacuum glazing whose internal pressure is $10^{-3}$ torr was as low as about $5.7W/m^2{\cdot}K$. Thus, the condensation performance as well as the adiabatic performance was greatly improved compared to that of the ordinary glass.

Utilizing vacuum bagging process to enhance bond strength between FRP sheets and concrete

  • Abdelal, Nisrin R.;Irshidat, Mohammad R.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • This paper investigates the effect of utilizing vacuum bagging process to enhance the bond behavior between fiber reinforced polymer (FRP) composites and concrete substrate. Sixty specimens were prepared and tested using double-shear bond test. The effect of various parameters such as vacuum, fiber type, and FRP sheet length and width on the bond strength were investigated. The experimental results revealed that utilizing vacuum leads to improve the bond behavior between FRP composites and concrete. Both the ultimate bond forces and the maximum displacements were enhanced when applying the vacuum which leads to reduction in the amount of FRP materials needed to achieve the required bond strength compared with the un-vacuumed specimens. The efficiency of the enhancement in bond behavior due to vacuum highly depends on the fiber type; using carbon fiber showed higher enhancement in the bond strength compared to the glass fiber when vacuum was applied. On the contrary, specimens with glass fiber showed higher enhancement in the maximum slippage compared to specimens with carbon fibers. Utilizing vacuum does not affect the debonding failure modes but lead to increase in the amount of attached concrete on the surface of the debonded FRP sheet.

A Simulation Model for Vaccum-Driven Bonding of Glass Panels in the Cell Process for LCD Manufacturing (LCD 유리원판 진공식 합착공정 해석을 위한 수치모델)

  • Ji Chul-Wook;Kwak Ho Sang;Kim Kyoung Hoon
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.33-41
    • /
    • 2003
  • A simplified simulation model is designed to investigate the vacuum-driven bonding of glass panels in the cell process for LCD manufacturing. The bonding process is modelled by the transient flow of a weakly-compressible fluid in a very thin channel between two horizontal glass panels. An order of magnitude scaling analysis is conducted based on the characteristic feature of the channel of which height is much smaller than the horizontal length scales. It is revealed that the flow in the channel is represented by a Poiseuille flow of a compressible fluid. A finite volume model has been constructed to acquire the numerical solution to the derived simplified equations. For a simple test problem of pressure-driven microchannel flow, an assessment is made of the accuracy and validity of the proposed model. The basic aspects of vacuum-driven bonding are examined numerically, and the applicability of the present simulation model is illustrated.

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

Tip-less PDP Vacuum In-Line Sealing Technology by Bubble-Reduced Frit along an Auxiliary Heating Line

  • Kwon, Sang-Jik;Yang, Hwi-Chan;Lee, Myung-Sik;Whang, Ki-Woong;Jung, Dong-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.643-646
    • /
    • 2002
  • Sealing of two glass plates composing of PDP panel was done in a vacuum chamber by using an auxiliary heating line(AHL). In order to improve the uniformity of sealing temperature and reduce the panel temperature during sealing, the AHL was introduced by a screen printing method inside a frit glass and used as a part of heating source for the frit melting. By using the AHL technology and the specially prepared frit glass, we have successfully sealed a PDP test panel without bubbles and any leak through the frit glass.

  • PDF

Double Textured AZO Film and Glass Substrate by Wet Etching Method for Solar Cell Application

  • Jeong, Won-Seok;Nam, Sang-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.594-594
    • /
    • 2012
  • Al doped ZnO (AZO) thin films were deposited on textured glass substrate by magnetron sputtering method. Also, AZO films on textured glass were etched by hydrochloric acid (HCl). Average thickness of etched AZO films are 90 nm. We observed morphology of AZO film by AFM with various etchant concentration and etching time. Etched AZO films have low resistivity and high haze. The surface RMS roughness of AZO film was increased from 53.8 nm to 84.5 nm. The haze ratio was also enhanced in above 700 nm of wavelength due to light trapping effect was increased by rough AZO surface. The etched AZO films on textured glass are applicable to fabricate solar cell.

  • PDF

Electrical Conductivity of Vacuum Evaporated Al Films on Glass (유리표면에 진공증착된 Al박막의 전기전도성)

  • 김동호;박현수;정창주;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.101-110
    • /
    • 1987
  • The relative electrical conductivity of vacuum deposited Al films on a soda-lime(2947) and an alumino boro silicate(7809) glass was investigated with the variation of the relative humidity,temperature and film thickness. The structure and microstructure of Al films before and after exposure to the humidity wereexamined by the X-ray Diffractormenter(XRD) and Scanning Electron Microscope(SEM). As the relative humidity increased, the electrical conductivity of Al films on both glasses was decreased. However, the Al films on 7809 glass showed higher conductivity than that of 2947 glass under the same testing conditions. The decreasing of electrical conductivity was caused by the formation of Aluminum hydroxide which was made by the reaction between the aluminum films and water vapor.

  • PDF