• Title/Summary/Keyword: Vacuum Furnace

Search Result 283, Processing Time 0.025 seconds

Heat Transfer Analysis in the Vacuum Carburizing Furnace (진공 침탄로 내의 전열 해석)

  • Lee, In-Sub;Ryou, Hong-Sun;Kim, Won-Bae;Yang, Je-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.877-882
    • /
    • 2003
  • The main objective of the present study is to analyze the heat transfer characteristics in the vacuum carburizing furnace. Local temperatures are measured at different locations in the self-fabricated furnace for various operating conditions using K-type thermocouples. In addition, the present study simulates the fluid flows and heat transfer in the vacuum carburizing furnace using a commercial package (Fluent V. 6.0), and compares the predictions of local temperatures with experimental data. The temperature and flow fields are predicted. It is found that the time taken for reaching the steady-state temperature under the vacuum pressure is shorter than that under the normal pressure condition. It means that the carburizing furnace under vacuum pressure condition is capable of saving the required energy more efficiently than the furnace under the normal pressure condition. Furthermore, the temperature variations predicted by the numerical simulations are in good agreement with experimental data.

Improvments in Cost Reduction for Vacuum Sintering and Vacuum and Overpressure Sintering for Tungsten Carbides

  • Ermel, Dieter
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.293-298
    • /
    • 1998
  • In all larger hardmetal workshops furnaces for dewaxing, vacuum sintering or vacuum and overpressure sintering are today's standard. The furnace technology is well established. Equipment specifications such as operating overpressure, determine sintering cost, product quality, safety and reliability of the furnace and ultimately influence the competitiveness of the hard metal procucer in the global market. Essential furnace requirements are an efficient utilization of the furnace, an environmental friendly dewaxing system, high temperature uniformity, metallurgical treatment with process gases, as well as reduced cooling time by means of rapid cooling. Examples of reduced sintering costs are described achieved using a new design of vacuum sintering furnace with an improved rapid cooling device, cooling times are reduced by up to 45%. Additionally, a cost comparison of two different designs of vacuum overpressure sintering furnaces are included.

  • PDF

Optimal Design of High Temperature Vacuum Furnace Using Thermal Analysis Database (전산 열해석 DB를 이용한 초고온 진공로 최적설계)

  • Li Zhen-Zhe;Park Mee-Young;Byun Yung-Hwan;Lee Chang-Jin;Lee Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.594-601
    • /
    • 2006
  • Optimization study has been carried out to design an energy efficient, high temperature vacuum furnace which satisfies users' design requirements. First of all, the transient temperature distribution and the uniform temperature zone results have been compared with the steady state results to validate the feasibility of using steady state solution when constructing the thermal analysis DB. In order to check the accuracy, the interpolated results using thermal analysis DB have been compared with the computational and the experimental results. In this study, total heat flux is selected as the objective function, and the geometry parameters of vacuum furnace including the thickness of insulator, the heat zone sizes and the interval between heater and insulator are the design variables. The Uniform temperature zone sizes and the wall temperature are imposed as the design constraints. With negligible computational cost a high temperature vacuum furnace which has $40\sim60%$ reduction in total heat flux is designed using thermal analysis DB.

Experimental Study of Heat Transfer in Vacuum Furnace (진공상태에서의 전열현상에 대한 실험적 연구)

  • Yang, Je-Bok;Kim, Won-Bae;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

Microstructure and Effective Case Depth of the Vacuum Carburized Steels (진공침탄열처리강의 조직 및 유효경화깊이)

  • Choi, Y.T.;Byoun, S.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.32-40
    • /
    • 1992
  • This content is a part of the results of the study on the development of the vacuum carburizing technology. In this study the vacuum carburizing furnace being used was the furnace that developed through the joint project between KIMM and Kyung-Pook Heat Treating Co. from June 1988 to Nov. 1990. And the used carburizing gas was the propane gas and the introducing methods of the gas applied two methods such as pulse and constant pressure. By this study we established the basis of the furnace manufacturing technology and of the processing technology in the vacuum carburizing. Above all in this work there are notable meanings in a viewpoint of the foremost research in home. Hereafter, we are going to industrialize the vacuum carburizing technology by improving the results of the present work and by developing the process for the mass production.

  • PDF

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Thermally Grown Oxide (TGO) Growth Inhibition in a Thermal Barrier Coating (열차폐 코팅에서 열산화물층 억제에 관한 연구)

  • Kim, Hyun-Ji;Kim, Min-Tae;Park, Hai-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.70-74
    • /
    • 2012
  • In thermal barrier coating (TBC) systems, the life of the coating depends on thermally grown oxide (TGO) layer because most of the failure of TBCs occurs when TGO growth increases. In order to inhibit TGO growth, process was additionally carried out before the heat treatment of the TBC coating layer at $1200^{\circ}C$ in air. In the additional process, heat treatment in vacuum furnace of < $10^{-5}$ torr was conducted for 7 h and 14 h before the heat treatment. The area and length of TGO, as well as the crack length in the TBC were characterized using a scanning electron microscope (SEM). The TGO thickness and crack of specimens pre-heat treated in vacuum furnace were reduced by 45% compare to those heat treated in furnace. Consequently, pre-heat treatment in a vacuum furnace process lead to effective inhibition of growth of the TGO.

Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace (1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동)

  • Kwon, Gi-hoon;Moon, Kyoungil;Park, Hyunjun;Lee, Young-Kook;Jung, Minsu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

A Photoreflectance Study of ArF Excimer Laser Annealing and Furnace Annealing (n-GaAs 구조에서의 ArF excimer laser annealing에 따른 Photoreflectance 특성 연구)

  • Kim, Ki-Hong;Yu, Jae-In;Sim, Jun-Hyoung;Bae, In-Ho;Lim, Jin-Hwan;Kim, Jin-Hi;Yu, Jae-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.141-144
    • /
    • 2007
  • We investigated variation of the photoreflectance(PR) signals for n-GaAs furnace and laser annealed. The samples were annealed by using ArF excimer laser(5 min, $30{\sim}50\;W$) and furnace(5 min $400{\sim}700^{\circ}C$). The PR signals(top point) measured from the ArF excimer laser annealed sample showed 1.42 eV and furnace annealed sample showed 1.43 eV. This result is ArF excimer laser annealed sample was uniform annealed surface and inter state.