DOI QR코드

DOI QR Code

A Photoreflectance Study of ArF Excimer Laser Annealing and Furnace Annealing

n-GaAs 구조에서의 ArF excimer laser annealing에 따른 Photoreflectance 특성 연구

  • Kim, Ki-Hong (Department of Visible, Kyungwoon University) ;
  • Yu, Jae-In (Department of Physics, Yeungnam University) ;
  • Sim, Jun-Hyoung (Department of Physics, Yeungnam University) ;
  • Bae, In-Ho (Department of Physics, Yeungnam University) ;
  • Lim, Jin-Hwan (Research and Development Center, Tae Yang Electronics) ;
  • Kim, Jin-Hi (Research and Development Center, Tae Yang Electronics) ;
  • Yu, Jae-Yong (Research and Development Center, Tae Yang Electronics)
  • 김기홍 (경운대학교 안경광학과) ;
  • 유재인 (영남대학교 이과대학 물리학과) ;
  • 심준형 (영남대학교 이과대학 물리학과) ;
  • 배인호 (영남대학교 이과대학 물리학과) ;
  • 임진환 (제2기업부설연구소 (주)태양기전) ;
  • 김진희 (제2기업부설연구소 (주)태양기전) ;
  • 유재용 (제2기업부설연구소 (주)태양기전)
  • Published : 2007.03.30

Abstract

We investigated variation of the photoreflectance(PR) signals for n-GaAs furnace and laser annealed. The samples were annealed by using ArF excimer laser(5 min, $30{\sim}50\;W$) and furnace(5 min $400{\sim}700^{\circ}C$). The PR signals(top point) measured from the ArF excimer laser annealed sample showed 1.42 eV and furnace annealed sample showed 1.43 eV. This result is ArF excimer laser annealed sample was uniform annealed surface and inter state.

n-GaAs의 시료를 furnace annealing 처리와 laser annealing 처리를 한 후, PR 방법으로 비교 조사하였다. 시료는 Furnace annealing을 5 분간 $400{\sim}800^{\circ}C$에서 처리한 시료와 ArF excimer laser($30{\sim}50\;W$)로 5 분간 Laser annealing 처리 한 시료로 준비하였다. Furnace로 annealing을 한 경우에 주 신호(정점)는 1.43 eV에서 관측되었는데 비해 laser로 annealing 한 샘플은 1.42 eV로 0.01 eV가 더 작게 관측되었다. 이는 laser annealing이 furnace annealing 보다 표면과 내면에서 일어나는 열처리 효과가 더 고르게 일어나가 때문이다.

Keywords

References

  1. M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, A. Grodzicki, P. Piszczek, A. Bratkowski, Journal of Molecular Structure 704, 107 (2004) https://doi.org/10.1016/j.molstruc.2004.01.053
  2. P.A. Lane, J. Rostalski, C. Giebeler, S.J. Martin, D.D.C. Bradley, D. Meissner, Solar Energy Materials and Solar Cells 63, 3(2003) https://doi.org/10.1016/S0927-0248(00)00013-1
  3. M. Wojdyła, B. Derkowska, M. Rębarz, A. Bratkowski, W. Bała, Journal of Optics. A, Pure and Applied Optics 7, 463 (2005) https://doi.org/10.1088/1464-4258/7/9/004
  4. J. Misiewicz, G. Sęk, R. Kudrawiec, P. Sitarek, Thin Solid Films 450, 14 (2004) https://doi.org/10.1016/j.tsf.2003.10.041
  5. M.,Wojdyła, B., Derkowska,W., Bała, A., Bratkowski, A., Korcala, Optical Materials, (in press)
  6. C.M. Lai, F.Y. Chang, C.W. Chang, C.H. Kao, H.H. Lin, G.J. Jan, J. Lee, Appl. Phys. Lett. 82, 3895 (2003) https://doi.org/10.1063/1.1581003
  7. N.H. Bonadeo, A.S. Lenihan, G. Chen, J.R. Guest, D. Gammon, D.S. Katzer, D. Park, Appl. Phys. Lett. 75, 2933 (1999) https://doi.org/10.1063/1.125177
  8. H. Shen, M. Dutta, J. Appl. Phys. 78, 2151 (1995) https://doi.org/10.1063/1.360131
  9. J.M. GilpSerez, J.L. SSanchez-Rojas, E. Munoz, E. Calleja, J.P.R. David, M. Reddy, G. Hill, J. SSanchez-Dehesa, J. Appl. Phys. 76, 5931 (1994) https://doi.org/10.1063/1.358416
  10. P.W. Yu, B. Jogai, T.J. Rogers, P.A. Martin, J.M. Ballingall, J. Appl. Phys. 76, 7535 (1994) https://doi.org/10.1063/1.357985
  11. D.Y. Lin, S.H. Liang, Y.S. Huang, K.K. Tiong, F.H. Pollak, K.R. Evans, J. Appl. Phys. 85 (1999) 8235 https://doi.org/10.1063/1.370664
  12. B. Jogai, P.W. Yu, D.C. Streit, J. Appl. Phys. 75, 1586 (1994) https://doi.org/10.1063/1.356395