• Title/Summary/Keyword: Vaccine development

Search Result 453, Processing Time 0.028 seconds

Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages

  • Pureum Lee;Chang-Ung Kim;Sang Hawn Seo ;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.4.1-4.18
    • /
    • 2021
  • The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

Recombinant zoster vaccine (Shingrix®): a new option for the prevention of herpes zoster and postherpetic neuralgia

  • Singh, Grisuna;Song, Sejin;Choi, Eunjoo;Lee, Pyung-Bok;Nahm, Francis Sahngun
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • Postherpetic neuralgia (PHN) is a challenging condition for pain management specialists. The prevention of herpes zoster (HZ) and subsequent PHN in individuals aged 50 years and older, via the development of new vaccines, is an ongoing research project. The live zoster vaccine (LZV, Zostavax®) was the first proof of concept that vaccination could prevent HZ, but LZV cannot be used in various immunecompromised patients. This led to the development of a new non-live recombinant zoster vaccine (RZV, Shingrix®). This RZV has shown promising results in many clinical trials, with high reactogenicity and similar systemic adverse effects compared to those of LZV. The National Advisory Committee on Immunization has recommended LZV as a standard vaccine for HZ prevention in adults ≥ 50 years of age, but no studies directly comparing the safety and efficacy of RZV and LZV vaccines have been conducted. This article reviews the brief history, efficacy, and safety of the two vaccines and discusses the advantage of RZV over LZV based on the available literature.

Efficacy of 23-valent Pneumococcal Polysaccharide Vaccine in Steroid Responsive Nephrotic Syndrome (스테로이드 반응성 신증후군 환아에서 23-valent pneumococcal polysaccharide vaccine의 예방효과)

  • Hahn, Hye-Won;Ha, Il-Soo;Cheong, Hae-Il;Lee, Hoan-Jong;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 2002
  • Purpose Streptococcus pneumoniae is a major pathogen in both adults and children, causing significant morbidity and mortality In patients with nephrotic syndrome, Streptococcus pneumoniae is a major cause of spontaneous peritonitis, and the increasing incidence of penicillin-resistance strain facilitates the development of effective vaccine. The limitation of current pneumococcal polysaccharide vaccine prompted development of polysaccharide- protein conjugate vaccine. Methods: We reviewed the medical record of total 225 steroid responsive nephrotic patients to ascertain the effectiveness of 23- valent pneumococcal polysaccharide vaccine. Results. Twenty- eight patients have developed peritonitis during the courses, and 7 of those have recurrent peritonitis. Fifty- five patients were vaccinated and followed- up for 1- 108 months (mean 38.5 months), and during the follow- up period, pneumococcus related peritonitis was not detected. Vaccine- related relapse of nephrotic syndrome w as absent. Conclusion: In spite of the non- consensus about the efficacy of PPV23, clinically it benefits, and until the clinical trial of PCV7 is completed, PPV23 will be recommended. (J Korean Soc Pediatr Nephrol 2002;6: 56-60)

  • PDF

Potentiation of Th1-Type Immune Responses to Mycobacterium tuberculosis Antigens in Mice by Cationic Liposomes Combined with De-O-Acylated Lipooligosaccharide

  • Ko, Ara;Wui, Seo Ri;Ryu, Ji In;Lee, Yeon Jeong;Hien, Do Thi Thu;Rhee, Inmoo;Shin, Sung Jae;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2018
  • Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Bacillus Calmette-$Gu\acute{e}rin$ (BCG) vaccine is the only TB vaccine currently available, but it is not sufficiently effective in preventing active pulmonary TB or adult infection. With the purpose of developing an improved vaccine against TB that can overcome the limitations of the current BCG vaccine, we investigated whether adjuvant formulations containing de-O-acylated lipooligosaccharide (dLOS) are capable of enhancing the immunogenicity and protective efficacy of TB subunit vaccines. The results revealed that the dLOS/dimethyl dioctadecyl ammonium bromide (DDA) adjuvant formulation significantly increased both humoral and Th1-type cellular responses to TB subunit vaccine that are composed of three antigens, Ag85A, ESAT-6, and HspX. The adjuvanted TB vaccine also effectively induced the Th1-type response in a BCG-primed mouse model, suggesting a potential as a booster vaccine. Finally, the dLOS/DDA-adjuvanted TB vaccine showed protective efficacy against M. tuberculosis infection in vitro and in vivo. These data indicate that the dLOS/DDA adjuvant enhances the Th1-type immunity and protective efficacy of the TB subunit vaccine, suggesting that it would be a promising adjuvant candidate for the development of a booster vaccine.

Expression and Immunogenicity of SARS-CoV-2 Virus-Like Particles based on Recombinant Truncated HEV-3 ORF2 Capsid Protein

  • Zhou, Yong-Fei;Nie, Jiao-Jiao;Shi, Chao;Ning, Ke;Cao, Yu-Feng;Xie, Yanbo;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1335-1343
    • /
    • 2022
  • COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.

Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses

  • Kim, Kyun-Do;Hwang, Insu;Ku, Keun Bon;Lee, Sumin;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1109-1115
    • /
    • 2020
  • The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.