• Title/Summary/Keyword: VSC

Search Result 276, Processing Time 0.027 seconds

Analysis Method of Volatile Sulfur Compounds Utilizing Separation Column and Metal Oxide Semiconductor Gas Sensor

  • Han-Soo Kim;Inho Kim;Eun Duck Park;Sang-Do Han
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.125-133
    • /
    • 2024
  • Gas chromatography (GC) separation technology and metal oxide semiconductor (MOS) gas sensors have been integrated for the effective analysis of volatile sulfur compounds (VSCs) such as H2S, CH3SH, (CH3)2S, and (CH3)2S2. The separation and detection characteristics of the GC/MOS system using diluted standard gases were investigated for the qualitative and quantitative analysis of VSCs. The typical concentrations of the standard gases were 0.1, 0.5, 1.0, 5.0, and 10.0 ppm. The GC/MOS system successfully separated H2S, CH3SH, (CH3)2S, and (CH3)2S2 using a celite-filled column. The reproducibility of the retention time measurements was at a 3% relative standard deviation level, and the correlation coefficient (R2) for the VSC concentration was greater than 0.99. In addition, the chromatograms of single and mixed gases were almost identical.

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Effects of Professional Body Massage on Forward Head Posture, Neck Pain, and Plantar Foot Pressure Balance in Men in their 20s

  • Jang, Soon-Seob;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Kim, Eui-Suk;Woo, Kyung-Hee;Oh, Se-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.211-217
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effect of a 12-week professional body massage program (PMP) on forward head posture, neck pain, and plantar foot pressure balance in men in their 20s. Method: A total of 20 men with musculoskeletal diseases were recruited for this study. The participants were asked to take part in a PMP twice a week for 12 weeks. The cranial vertical angle (CVA) for forward head posture and visual analogue scale (VSC) for neck pain and right/left foot plantar pressure balances were extracted to compare between pre- and post-program differences. Results: CVAs before ($56.86{\pm}4.55^{\circ}$) and after ($62.72{\pm}4.57^{\circ}$) and VSCs before ($6.95{\pm}1.70$) and after ($1.70{\pm}1.56$) PMP revealed statistically significant differences. The right foot, after PMP, showed a significant increase in the plantar pressure balance from $46.17{\pm}2.95$ to $49.44{\pm}1.29%$, while the left foot decreased significantly from $53.83{\pm}2.95%$ to $50.56{\pm}1.29%$. Therefore, based on these results, it may be said that the foot pressure balance abilities were improved after PMP because the ideal foot pressure ratio is 50%. Conclusion: Consequently, it was suggested that a 12-week PMP could be utilized for improvement of forward head posture, neck pain, and foot plantar pressure balance in men in the 20s with musculoskeletal diseases.

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

Up-stream Channel Performance of Ethernet PON System Using $2{\times}32$ Splitter (전광섬유형 $2{\times}32$ 스프리터 제작과 이를 이용한 Ethernet PON 시스템의 상향통신채널 성능평가)

  • Jang, Jin-Hyeon;Kim, Jun-Hwan;Shin, Dong-Ho
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.2
    • /
    • pp.29-36
    • /
    • 2005
  • All-optical fiber-type $2{\times}32$ splitters for an Ethernet PON (passive optical network) were fabricated by using a FBT (fiber biconical tapered) process and the performance of the splitters was tested in upstream transmission of the EPON system. The $2{\times}32$ splitters was obtained by cascading $1{\times}4$ splitters fabricated by a conventional FBT process and showed -18 dB of insertion loss with 1.5 dB uniformity of output power at each channel and -0.1 dB of polarization dependent loss. The insertion loss variation was below 0.1 dB at the temperature range of $-40^{\circ}C\;to\;80^{\circ}C$. For upstream channel transmission test in the EPON system were a Zig board and a burst mode receiver. Zenko-made optical module was used for the burst mode receiver by adding functions of serializer/deserializer and clock data recovery, a Virtex II pro20 chipset and Vitesse VSC7123 were used in the Zig board for characterizing the burst mode and in the clock data recovery chipset, respectively. Startup acquisition lock time and data acquisition lock time were measured to be 670ns and 400ns, respectively, in the upstream channel transmission of the EPON system adapting the $2{\times}32$ splitter fabricated in this work.

  • PDF

Analysis of Control Algorithm for Instantaneous Voltage Sag Corrector (순시적인 전압 sag 보상기에 대한 제어 알고리즘의 해석)

  • 이상훈;김재식;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • This paper represents the control algorithm of the instantaneous voltage sag corrector for the power quality enhancement in distribution line. Especially, a novel detection technique of the symmetrical components is proposed for the analysis of the three-phase unbalanced and asymmetrical problems caused by the single line ground fault which is he most frequent event. This proposed method is based on the simple calculation and the control references of the symmetrical components for voltage compensation can be described as dc value without any other phase detection procedure. And also, for the generation of the reference voltages, the UF and MF defined by IEC is considered. Using this proposed control algorithm, the compensator has the fast dynamic characteristics and the THD of the compensated voltage waveform is very low. Finally, the validity of the proposed algorithm is proved by the PSCAD/EMTDC simulation and experimental results.

  • PDF

The Design of Multi-channel Synchronous and Asynchronous Communication IC for the Smart Grid (스마트그리드를 위한 다채널 동기 및 비동기 통신용 IC 설계)

  • Ock, Seung-Kyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • In this paper, the IC(Integrated Circuit) for multi-channel synchronous communication was designed by using FPGA and VHDL language. The existing chips for synchronous communication that has been used commercially are composed for one to two channels. Therefore, when communication system with three channels or more is made, the cost becomes high and it becomes complicated for communication system to be realized and also has very little buffer, load that is placed into Microprocessor increases heavily in case of high speed communication or transmission of high-capacity data. The designed IC was improved the function and performance of communication system and reduced costs by designing 8 synchronous communication channels with only one IC, and it has the size of transmitter/receiver buffer with 1024 bytes respectively and consequently high speed communication became possible. It was designed with a communication signal of a form various encoding. To detect errors of communications, the CRC-ITU-T logic and channel MUX logic was designed with hardware logics so that the malfunction can be prevented and errors can be detected more easily and input/output port regarding each communication channel can be used flexibly and consequently the reliability of system was improved. In order to show the performance of designed IC, the test was conducted successfully in Quartus simulation and experiment and the excellence was compared with the 85C3016VSC of ZILOG company that are used widely as chips for synchronous communication.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Comparison of Efficiency for Voltage Source and Current Source Based Converters in 5MW PMSG Wind Turbine Systems (전압형 및 전류형 컨버터를 적용한 5MW PMSG 풍력발전시스템의 효율 비교)

  • Kang, Tahyun;Kang, Taewon;Chae, Beomseok;Lee, Kihyun;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.410-420
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5 MW-class medium-voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for a voltage source type topology, whereas a two-level converter is employed for current source type topology, considering the popularity in the industry. To match the required voltage level of 4160 V with the same switching device of IGCT as in the voltage source converter, two active switches are connected in series for the case of current source converter. Transient thermal modeling of a four-layer Foster network for heat transfer is done to better estimate the transient junction and case temperature of power semiconductors during various operating conditions in wind turbines. The loss analysis is confirmed through PLECS simulations. Comparison result shows that the VSC-based wind turbine system has higher efficiency than the CSC under the rated operating conditions.

A Strategy of Increasing the Wind Power Penetration Limit with VSC Type MMC-HVDC in Jeju Power System (전압형 MMC-HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • Lee, Seungmin;Kim, Eel-Hwan;Kim, Ho-Min;Chae, Sang-Heon;Quach, Ngoc-Thinh
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.550-557
    • /
    • 2015
  • The Jeju Special Self-Governing Province is currently promoting the "Carbon-free Island by 2030" policy, which requires the use of renewable energy instead of fossil fuel so that the island will have no carbon gases generated by 2030. To implement this policy, the island plans to build a wind power plant capacity of 1.09 GW in 2020; this wind power plant is currently ongoing. However, when wind power output is greater than the power demand of the island, the stability of Jeju Island power system must be prepared for it because it can be a problem. Therefore, this study proposes a voltage source-type MMC-HVDC system linked to mainland Korea to expand the wind power penetration limits of Jeju Island under the stable operation of the Jeju Island power system. To verify the effectiveness of the proposed scheme, computer simulations using the PSCAD/EMTDC program are conducted, and the results are demonstrated. The scenarios of the computer simulation consist of two cases. First, the MMC-HVDC system is operated under variable wind power in the Jeju Island power system. Second, it is operated under the predicted Jeju Island power system in 2020.