• Title/Summary/Keyword: VR Image

Search Result 220, Processing Time 0.027 seconds

A Study on the Gaming Experience of the Movie <1917> - Focused on the Digital Moving Long Take Shot (영화 <1917>의 게임적 체험 연구 - 디지털 무빙 롱테이크 쇼트를 중심으로)

  • Ryu, Woo Hyun;Jung, Won Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.411-420
    • /
    • 2022
  • Entering the digital cinema era, movies and games are remediating each other. The shots of digital movies are being transformed into realistic content through digital Moving long-take shots that transcend time and space and move smoothly. At this time, the digital Moving long take shot that continuously captures the space in all directions without an external screen induces a game experience. In addition, the camera that constantly accompanies the person enhances the sense of immersion in the game in a way similar to the point of view of the game. While various immersive device contents represented by VR, AR and XR are emerging, the advent of <1917> suggests significant implications for post-cinema in that it creates a game experience while maintaining the traditional screen environment and cinematic paradigm.

Harmonization Algorithm to generate Stereoscopic VR Image

  • Khayotov, Mukhammadali;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.269-271
    • /
    • 2020
  • In this letter, we propose a novel approach for stitching stereoscopic panoramas. When stitching stereoscopic panoramas, the amount of depth retrieved is the most important factor to pay attention for. Also, it is very crucial to deliver the two left and right panoramas with the right depth information to deliver good 3D perception. However, when stitching the two panoramas independently using the state-of-the-art algorithms and methods, we do still have some inconsistencies with the disparity map retrieved from the panoramas. To overcome this problem, we propose a method that modifies the latest conventional algorithm by making the two panoramas dependent of one another. This brings two panoramas with a much more consistent disparity map that lets users fully immerse into a comfortable stereoscopic vision.

  • PDF

Overlay Rendering of Multiple Geo-Based Images Using WebGL Blending Technique (WebGL 블렌딩 기법을 이용한 다중 공간영상정보 중첩 가시화)

  • Kim, Kwang-Seob;Lee, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.104-113
    • /
    • 2012
  • Followed by that HTML5(Hypertext Markup Language5) was introduced, many kinds of program and services based on this have been developed and released. HTML5 is technical standard specifications for cross platform for personal computers and mobile devices so that it is expected that continuing progress and wide application in the both sides of the academic and the industrial fields increase. This study is to design and implement a mobile application program for overlay rendering with DEM and other geo-based image sets using HTML5 WebGL for 3D graphic processing on web environment. Particularly, the blending technique was used for overlay processing with multiple images. Among available WebGL frameworks, CubicVR.js was adopted, and various blending techniques were provided in the user interface for general users. For the actual application in the study area around the Sejong city, serveral types of geo-based data sets were used and processed: KOMPSAT-2 images, ALOS PALSAR SAR images, and grid data by environment measurements. While, DEM for 3D viewing with these geo-based images was produced using contour information of the digital map sets. This work demonstrates possibilities that new types of contents and service system using geo-based images can be extracted and applied.

Realization of An Outdoor Augmented Reality System using GPS Tracking Method (GPS 트래킹 방식을 이용한 옥외용 증강현실 시스템 구현)

  • Choi, Tae-Jong;Kim, Jung-Kuk;Huh, Woong;Jang, Byun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.5
    • /
    • pp.45-55
    • /
    • 2002
  • In this paper, we describe an outdoor augmented reality system using GPS tracking for position and attitude information. The system consist of a remote mobile operation unit and a ground operation unit. The remote mobile operation unit includes a real-time image acquiring device, a GPS tracking device, and a wireless data transceiver; the ground operation unit includes a wireless transceiver, a virtual image generating device, and an image superimposing device. The GPS tracking device for measurement of position and attitude of the remote mobile operation unit was designed by TANS Vector and RT-20 for DGPS. The wireless data transceiver was for data transmission between the remote mobile operation unit and the ground operation unit. After the remote mobile operation unit was installed on a vehicle and a helicopter, the system was evaluated to verify its validity in actual applications. It was found that the implemented system could be used for obtaining real-time remote information such as construction simulation, tour guide, broadcasting, disaster observation, or military purpose.

LDI (Layered Depth Image) Representation Method using 3D GIS Implementation (LDI 표현방법을 이용한 3D GIS 구현)

  • Song Sang-Hun;Jung Young-Kee
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.231-239
    • /
    • 2006
  • Geographic information system (GIS) geography reference it talks the software system which is possible. When like this geographic information system in key feature trying to observe the problem which is an expression of geography information in the center, the research and development with 3 dimension expressions is active from 2 dimension expressions of existing and it is advanced. double meaning geography information which is huge to be quick, the place where it controls efficiently there is a many problem, the ring from the dissertation which it sees and 3 dimensions and efficient scene of the GIS rendering compared to the ring from hazard image base modeling and rendering compared to hazard proposal LDI (Layered Depth Images) it uses GIS rendering compared to the ring to sleep it does. It acquired the terrain data of 3 dimensions from thread side base method. terrain data of 3 dimensions which are acquired like this the place where it has depth information like this depth information in base and the LDI, it did it created. Also it was a traditional modeling method and 3DS-Max it used and it created the LDI. It used LDI information which is acquired like this and the GIS of more efficient 3 dimensions rendering compared to the possibility of ring it was.

  • PDF

Omnidirectional Environmental Projection Mapping with Single Projector and Single Spherical Mirror (단일 프로젝터와 구형 거울을 활용한 전 방향프로젝션 시스템)

  • Kim, Bumki;Lee, Jungjin;Kim, Younghui;Jeong, Seunghwa;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Researchers have developed virtual reality environments to provide audience with more visually immersive experiences than previously possible. One of the most popular solutions to build the immersive VR space is a multi-projection technique. However, utilization of multiple projectors requires large spaces, expensive cost, and accurate geometry calibration among projectors. This paper presents a novel omnidirectional projection system with a single projector and a single spherical mirror.We newly designed the simple and intuitive calibration system to define the shape of environment and the relative position of mirror/projector. For successful image projection, our optimized omnidirectional image generation step solves image distortion produced by the spherical mirror and a calibration problem produced by unknown parameters such as the shape of environment and the relative position between the mirror and the projector. Additionally, the focus correction is performed to improve the quality of the projection. The experiment results show that our method can generate the optimized image given a normal panoramic image for omnidirectional projection in a rectangular space.

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

Implementation of View Point Tracking System for Outdoor Augmented Reality (옥외 증강현실을 위한 관측점 트래킹 시스템 구현)

  • Choi, Tae-Jong;Kim, Jung-Kuk;Huh, Woong;Jang, Byung-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.45-54
    • /
    • 2004
  • In this paper, a view point tracking system has been realized for outdoor augmented reality including broad area monitoring. Since the surroundings of the moving view point are changing, it is necessary to track the position and observation moment of the view point system for consistency between real and virtual images. For this reason, the GPS(Global Positioning System) is applied to the realized system for tracking the information on position and direction of the moving system. In addition, an optical position tracking system that is able to track view point in a limited area is used, because the local tracking system has to trace the image variation, seen to the observer in a moving vehicle, at a particular position and time. It was found that the realized outdoor augmented reality system, which combined the virtual information tracked in real time with the real image, can be very practical in various application area.

Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences (낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출)

  • Park, Jung-Woo;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • The paper proposes a novel unsupervised video object segmentation algorithm for image sequences with low depth-of-field (DOF), which is a popular photographic technique enabling to represent the intention of photographer by giving a clear focus only on an object-of-interest (OOI). The proposed algorithm largely consists of two modules. The first module automatically extracts OOIs from the first frame by separating sharply focused OOIs from other out-of-focused foreground or background objects. The second module tracks OOIs for the rest of the video sequence, aimed at running the system in real-time, or at least, semi-real-time. The experimental results indicate that the proposed algorithm provides an effective tool, which can be a basis of applications, such as video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing systems.

Fast Content-preserving Seam Estimation for Real-time High-resolution Video Stitching (실시간 고해상도 동영상 스티칭을 위한 고속 콘텐츠 보존 시접선 추정 방법)

  • Kim, Taeha;Yang, Seongyeop;Kang, Byeongkeun;Lee, Hee Kyung;Seo, Jeongil;Lee, Yeejin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.1004-1012
    • /
    • 2020
  • We present a novel content-preserving seam estimation algorithm for real-time high-resolution video stitching. Seam estimation is one of the fundamental steps in image/video stitching. It is to minimize visual artifacts in the transition areas between images. Typical seam estimation algorithms are based on optimization methods that demand intensive computations and large memory. The algorithms, however, often fail to avoid objects and results in cropped or duplicated objects. They also lack temporal consistency and induce flickering between frames. Hence, we propose an efficient and temporarily-consistent seam estimation algorithm that utilizes a straight line. The proposed method also uses convolutional neural network-based instance segmentation to locate seam at out-of-objects. Experimental results demonstrate that the proposed method produces visually plausible stitched videos with minimal visual artifacts in real-time.