• Title/Summary/Keyword: VPES

Search Result 5, Processing Time 0.016 seconds

The effect of prolonged storage and disinfection on the dimensional stability of 5 vinyl polyether silicone impression materials

  • Nassar, Usama;Flores-Mir, Carlos;Heo, Giseon;Torrealba, Ysidora
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.182-187
    • /
    • 2017
  • PURPOSE. Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. MATERIALS AND METHODS. 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at ${\alpha}=0.05$. RESULTS. The discs mean contraction was below 0.5% at all test times ranging from $0.200{\pm}0.014$ to $0.325{\pm}0.007$. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups (P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. CONCLUSION. The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks.

A Study on RGBY LED Light using a Vacuum Printing Encapsulation Systems Method (진공 프린팅 성형 인쇄법(VPES)을 이용한 R.G.B.Y(Red, Green, Blue, Yellow) LED 광원 연구)

  • Jang, Min-Suk;Kim, Yeoung-Woo;Shin, Gi-Hae;Park, Joung-Wook;Hong, Jin-Pyo;Song, Sang-Bin;Kim, Jae-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.10-18
    • /
    • 2011
  • In order to develop highly-integrated RGBY(Red, Green, Blue, Yellow) LED light, a high thermal radiation ceramic package was manufactured, and the encapsulation process was applied with a vacuum printing encapsulation system(VPES). After the completion of vacuum printing, the shape of the encapsulation layer could be controlled by heat treatment during the curing process, and the optical power became highly increased as the encapsulation layer approached a dome shape. The optical characteristics involved in a Correlated Color Temperature(CCT), a Color Rendering Index (CRI), and the efficiency of RGBY LED light were able to be identified by the experimental designing method. Regarding the characteristics of the white light of RGBY LED light, which were measured on the basis of the aforementioned optical characteristics, CRI posted 88, CCT recorded 5,720[$^{\circ}K$], and efficiency exhibited 52[lm/W]. The chip temperature of RGBY LEDs was below 55[$^{\circ}C$] when the consumption power of LED chips was 0.1[W] for the red, 0.3[W] for the green, 0.08[W] for the blue, and 0.24[W] for the yellow. Also, the thermal resistance of the highly-integrated RGBY LED light measured by T3Ster was 2.3[K/W].

The vacuolar processing enzyme (VPE) mutation suppresses an HR-like cell death induced by the double knockout mutant of vacuolar Ca2+-ATPases in Arabidopsis (애기장대에서 두 액포막 칼슘펌프 돌연변이에 의하여 유도되는 세포사멸 표현형의 액포수식효소(VPE) 돌연변이에 의한 억제)

  • Park, Hyeong-Cheol;Lee, Sang-Min;Kim, Ho-Soo;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • Calcium ($Ca^{2+}$) signals have been implicated in regulating plant development and responses to the environmental stresses including a programmed cell death pathway. In animals and plants, cytosolic $Ca^{2+}$ signals have been involved in the activation of programmed cell death (PCD). Recently, we reported that disruption of Arabidopsis vacuolar $\b{A}$utoinhibited $\underline{C}a^{2+}$-$\b{A}$TPases (ACAs), ACA4 and ACA11, resulted in the activation of a salicylic acid-dependent programmed cell death pathway. Although extensive studies have revealed various components of a PCD in plants, executors to directly induce PCD are well unknown. Here, we provide that the vacuolar processing enzymes (VPEs) are involved in a PCD induced by the double knockout mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis. The gene expression of VPE was rapidly up-regulated and the enzyme activity of VPE was increased in the double mutant plants. We also generated aca4/aca11/avpe, aca4/aca11/${\gamma}$vpe and aca4/aca11/avpe/${\gamma}$vpe mutant plants. Although cell death phenotype of the double mutant plants was not completely disappeared in the triple and quadruple mutant plants, the triple and quadruple mutant plants showed to significantly delay cell death phenotype of the double mutant plants. These results suggest that the VPE is involved in the HR-like cell death in the double mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis.