• Title/Summary/Keyword: VP8

Search Result 274, Processing Time 0.027 seconds

Imaging Characteristics of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 방사선 영상의 특징)

  • Jeong, Hoi-Woun;Kim, Jung-Min;Jeong, Man-Hee;Im, Eun-Kyung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared imaging characteristics and image quality of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of 60$\sim$150 kVp. Published data ell the effect of x-ray beam energy on imaging characteristics and image qualify when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects

  • Kim, Jun Ho;Abdala-Junior, Reinaldo;Munhoz, Luciana;Cortes, Arthur Rodriguez Gonzalez;Watanabe, Plauto Christopher Aranha;Costa, Claudio;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • Purpose: This study compared 2 cone-beam computed tomography (CBCT) systems in the detection of mechanically simulated peri-implant buccal bone defects in dry human mandibles. Materials and Methods: Twenty-four implants were placed in 7 dry human mandibles. Peri-implant bone defects were created in the buccal plates of 16 implants using spherical burs. All mandibles were scanned using 2 CBCT systems with their commonly used acquisition protocols: i-CAT Gendex CB-500 (Imaging Sciences, Hatfield, PA, USA; field of view [FOV], 8 cm×8 cm; voxel size, 0.125 mm; 120 kVp; 5 mA; 23 s) and Orthopantomograph OP300 (Intrumentarium, Tuusula, Finland; FOV, 6 cm×8 cm; voxel size, 0.085 mm; 90 kVp; 6.3 mA; 13 s). Two oral and maxillofacial radiologists assessed the CBCT images for the presence of a defect and measured the depth of the bone defects. Diagnostic performance was compared in terms of the area under the curve (AUC), accuracy, sensitivity, specificity, and intraclass correlation coefficient. Results: High intraobserver and interobserver agreement was found (P<0.05). The OP300 showed slightly better diagnostic performance and higher detection rates than the CB-500 (AUC, 0.56±0.03), with a mean accuracy of 75.0%, sensitivity of 81.2%, and specificity of 62.5%. Higher contrast was observed with the CB-500, whereas the OP300 formed more artifacts. Conclusion: Within the limitations of this study, the present results suggest that the choice of CBCT systems with their respective commonly used acquisition protocols does not significantly affect diagnostic performance in detecting and measuring buccal peri-implant bone loss.

The Study of Reducing Radiation Exposure Dose and Comparing SUV According to Applied IRIS (Iterative Reconstruction in Image Space) for PET/CT (PET/CT 검사 시 IRIS (Iterative Reconstruction in Image Space) 적용에 따른 CT 피폭선량 감소와 PET SUV 비교 연구)

  • Do, Yong Ho;Song, Ho Jun;Lee, Hyung Jin;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • Purpose : Presently, hardwares and softwares for reducing radiation exposure are continually developed for PET/CT examination. Purpose of this study is to evaluate effectiveness of reducing radiation exposure dose of CT and SUV changes of PET when applied each kernel to ACCT (Attenuation Correction Computed Tomography) according to adopted IRIS (Iterative Reconstruction in Image Space) software. Materials and Methods : Biograph mCT (Siemens, Germany) was used as a PET/CT scanner. Using AAPM CT performance phantom, from standard (120 kVp, 100 mAs), 7 scans were conducted by reducing 15 mAs each. After image reconstruction by FBP (Filtered Back Projection) and IRIS, noise and spatial resolution were evaluated. The same method was applied to anthropomorphic chest phantom and acquired images were compared. NEMA IEC body phantom was used for SUV evaluation. Injected dose rate for hot sphere (hot) and background cylinder (BKG) were 1:8. CT dose condition (120 kVp, 50 mAs) was the same for each scan and PET scan durations were 1, 2, 3 and 4min. After scanning, each kernel of IRIS was applied to ACCT. And PET images were reconstructed by ACCT adopted IRIS for comparing SUV changes. Results : AAPM phantom test for noise evaluation, SD for FBP 100 mAs, IRIS 55 mAs were 8.8 and 8.9. FBP 85 mAs, IRIS 40 mAs were 9.5 and 9.7. FBP 70 mAs, IRIS 25 mAs were 11.9 and 11.1. Above mAs condition for FBP and IRIS, SD showed similar values. And for spatial resolution test, there was no significant difference. For chest phantom test, when applied the same mAs and kernel to both of FBP and IRIS, every applied kernels showed reduced noise. Lower mAs and higher kernel value showed higher noise reduction. There was no considerable difference only except for I70 very sharp kernel for SUV comparison using NEMA IEC body phantom. Conclusion : In this study, low mAs (55 mAs) applied IRIS and standard mAs (100 mAs) applied FBP showed similar noise. And only except for I70 kernel, there was no significant SUV changes. It is possible to reduce needless radiation exposure and acquire better image quality than FBP's through applying appropriate kernel of IRIS to PET/CT.

  • PDF

Usefulness Evaluation of Application of Metallic Algorithm Reducing for Beam Hardening Artifact Occur in Typical Brain CT Image (머리 CT영상에서 흔히 발생하는 선속경화인공물 감소를 위한 금속인공물감소 알고리즘 적용의 유용성 평가)

  • Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • The study attempted to use computed tomography images to determine the usefulness of the reduction in the axial reduction algorithm in the event of a metallic artifacts reduction in the image of the beam-hardening effect, which is known as the most effective method of reducing metallic artifact reduction in the image and the reduction of the metal produced in this study. As a result, the result is increased to 140 kVp to reduce the value of the CT value by 0.02 to 0.05 %, resulting in decreased axial effect (P > 0.05). The CT value decreased from 12.4 to 26.9 % when applied to the reduction of the metallic. 12.4 to 26.9 % (p<0.05). In addition, in the qualitative assessment by the clinical trial evaluation, it was assessed as 1.8 points after applying the MAR algorithm, In the resolution of resolution and contrast evaluations, the estimation of the decrease in metallic artifact effects was assessed as the metal was assessed to be scored 7.2 points after the MAR algorithm was evaluated. Therefore, in case of artifacts due to irreversible beam hardening effect, it is useful to reduce artifacts caused by beam hardening effect by using various methods derived from existing researches and scanning by applying the metal artifact reduction algorithm proposed in this experiment.

Establishment of Quality Control System for Angiographic Unit (IVR장치의 성능 평가 기준 개발)

  • Kang, Byung-Sam;Son, Jin-Hyun;Kim, Seung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.236-244
    • /
    • 2011
  • Recently, the number of interventional procedures has increased dramatically as an alternative of invasive surgical procedure. The need for the quality control program of the angiographic units has also increased, because of concerns about the increased patient dose and the importance of image quality of angiographic units for the successful procedures. The purpose of this study was to propose an optimal guideline for the quality control program of the angiographic units. We reviewed domestic and international standards about medical imaging system and we evaluated the quality of 61 angiographic units in Korea with the use of NEMA 21 phantom. According to the results of our study, we propose a guideline for the quality control program of the angiographic units. Quality control program includes tube voltage test, tube current test, HVL test, image-field geometry test, spatial resolution test, low-contrast iodine detectability test, wire resolution test, phantom entrance dose test. Proposed reference levels are as follows: PAE < $\pm$ 10% in tube voltage test, PAE < $\pm$ 15% in tube current test, minimum 2.3 mmAl at 80 kVp in HVL test, minimum 'acceptable' level at image-field geometry test, 0.8 lp/mm for detector size of 34-40cm, 1.0 lp/mm for detector size of 28-33cm, 1.2 lp/mm for detector size of 22-27cm in spatial resolution test, minimum 200mg/cc in low contrast iodine detectability test, phantom entrance dose should be under 10R/min, 0.012 inch wire should be seen at static wire resolution test, and 0.022 inch wire should be seen at moving wire resolution test.

Phylogenetic Analysis of Human Bocavirus in Hospitalized Children with Acute Respiratory Tract Infection in Korea (급성 호흡기 감염으로 입원한 소아에서 분리된 보카바이러스의 계통분석)

  • Ahn, Jong Gyun;Choi, Seong Yeol;Kim, Dong Soo;Kim, Ki Hwan
    • Pediatric Infection and Vaccine
    • /
    • v.19 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Purpose: Human bocavirus (hBoV), a recently discovered virus, has been detected in children with respiratory tract infections worldwide. The aim of this study was to analyze the frequency and molecular phylogeny of hBoV in the respiratory samples of children with acute respiratory tract infections in 2010. Methods: Nasopharyngeal samples were collected from 953 children with lower respiratory tract infections at Severance children's hospital in Korea from January 2010 to December 2010. We applied the multiplex PCR technique for the identification of 12 respiratory viruses from the samples. Among the total specimens, hBoV positive samples were subjected to phylogenetic analysis by sequencing a fragment of the VP1/VP2 gene junction. Results: hBoV was detected in 141 (14.8%) among 953 patients. The 61.7% of hBoV-positive samples were found to co-exist with other respiratory viruses. The results of phylogenetic analysis showed that all 141 hBoV-positive isolates were identified as hBoV 1, revealing a high similarity among the isolates (>98%). Conclusion: hBoV 1 with minimal sequence variations circulated in children with acute respiratory infections during 2010. More research is needed to determine the clinical severity and outcomes of the minimal sequence variations.

  • PDF

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.

A fractal analysis of bone phantoms from digital images (디지탈영상에서 골판톰의 프랙탈분석)

  • Kim Jae-Duk;Kim Jin-Soo;Lee Chang-Yul
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • Purpose : (1) To analyse the effect of exposure time, ROI size and one impact factor in the image processing procedure on estimates of fractal dimension; and (2) to analyse the correlated relationship between the fractal dimension and the Cu-Eq value (bone density). Materials and Methods : The cylindric bone phantoms of 6 large and 5 small diameter having different bone densities respectively and human dry mandible segment with copper step wedge were radiographed at 1.0 and 1.2 sec esposure (70 kVp, 7 mA) using one occlusal film and digitized. Eleven rectangular ROIs from 11 cylindric bone phantoms and 4 rectan-gular ROIs from cortical, middle, periodontal regions, and socket of bone were selected. Gaussian blurred Image was subtracted from original image of each ROI and multiplied respectively by 1, 0.8, and 0.5, and then the image was made binary, eroded and dilated once, and skeletonized. The fractal dimension was calculated by means of a box counting method in the software ImageJ. Results : The fractal dimension was decreased gradually with continued bone density decrease showing strong correlations (bone phantom; r> 0.87, bone; r> 0.68) under 70 kVp 1.0 sec M = 0.8. Fractal dimensions showed the significant differerence (p < 0.05) between two different exposure times on the same small ROI of bone phantom. Fractal dimensions between two different sizes of ROI on bone phantom showed the significant differerence (p < 0.05) under 1.2 sec exposure, but did not show it (p > 0.05) under 1.0 sec exposure. Conclusions : Exposure time, ROI size, and modifying factor during subtracting could become impacting on the results of fractal dimension. Fractal analysis with thoroughly evaluated method considering the various impacting factors on the results could be useful in assessing the bone density in dental radiography.

  • PDF

Evaluation of Relative Emission of Image Plate by Using Relative Sensitivity in Computed Radiography System (컴퓨터 방사선영상시스템에서 비감도를 이용한 영상판의 상대적 발광량 평가)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.355-361
    • /
    • 2014
  • The aim of the present study was to evaluate a relative emission of image plate (IP) in computed radiography (CR) system by using relative sensitivity in film/screen methods. The characteristic curve was obtained by using the uniform aluminum 11-step wedge penetrometer. X-ray exposure factors on radiographic digital image were 50 kVp, 10 mAs. We adjusted zero of all parameter of algorithms (MUSICA) so proximate to raw data and applied to 200 of exposure class. Modeling on relative emission of IP are used IP without fading time and IP after 4 hours, 8 hours, 12 hours, 24 hours in the respective storage after X-ray exposure. The results of this study showed that the sensitivity point density at the measuring of relative sensitivity in CR was suited pixel values of the 2000 easy to relatively measure the characteristic curve and when relative sensitivity is decreased, the amount of light emitted from the image signal for generating was also decreased. In conclusion, the proposed method of measurement of relative sensitivity can be utilized to evaluate the quantity of relative emission of IP in CR system.

Application of Dual Tree Complex Wavelet for Performance Improvement of CT Images (CT 영상의 화질개선을 위한 이중트리복합웨이블릿의 적용)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.941-946
    • /
    • 2019
  • Computed tomography (CT) has been increasing in frequency and indications for use in clinical diagnosis and treatment decisions. Multidetector CT has the advantage of shortening the inspection time and obtaining a high resolution image compared to a single detector CT, but has been pointed out the disadvantage of increasing the radiation exposure. In addition, when the low tube voltage is used to reduce the exposure dose in the CT, noise increases relatively. In the existing method, the method of finding the optimal image quality using the method of adjusting the parameters of the image reconstruction method is not a fundamental measure. In this study, we applied a double-tree complex wavelet algorithm and analyzed the results to maintain the normal signal and remove only noise. Experimental results show that the noise is reduced from 8.53 to 4.51 when using a complex oriented 2D method with 100kVp and 0.5sec rotation time. Through this study, it was possible to remove the noise and reduce the patient dose by using the optimal noise reduction algorithm. The results of this study can be used to reduce the exposure of patients due to the low dose of CT.