References
- Sanz M, Chapple IL, Working Group 4 of the VIII European Workshop on Periodontology. Clinical research on peri-implant diseases: consensus report of Working Group 4. J Clin Periodontol 2012; 39 Suppl 12: 202-6. https://doi.org/10.1111/j.1600-051X.2011.01837.x
- Bagis N, Kolsuz ME, Kursun S, Orhan K. Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: an in vitro study. BMC Oral Health 2015; 15: 64. https://doi.org/10.1186/s12903-015-0046-2
- Kolsuz ME, Bagis N, Orhan K, Avsever H, Demiralp K. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects. Dentomaxillofac Radiol 2015; 44: 20150070. https://doi.org/10.1259/dmfr.20150070
- Pinheiro LR, Scarfe WC, Augusto de Oliveira Sales M, Gaia BF, Cortes AR, Cavalcanti MG. Effect of cone-beam computed tomography field of view and acquisition frame on the detection of chemically simulated peri-implant bone loss in vitro. J Periodontol 2015; 86: 1159-65. https://doi.org/10.1902/jop.2015.150223
- Kamburoglu K, Kolsuz E, Murat S, Eren H, Yuksel S, Paksoy CS. Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artefact reduction mode. Dentomaxillofac Radiol 2013; 42: 20130176. https://doi.org/10.1259/dmfr.20130176
- Golubovic V, Mihatovic I, Becker J, Schwarz F. Accuracy of cone-beam computed tomography to assess the configuration and extent of ligature-induced peri-implantitis defects. A pilot study. Oral Maxillofac Surg 2012; 16: 349-54. https://doi.org/10.1007/s10006-012-0320-2
- de-Azevedo-Vaz SL, Vasconcelos Kde F, Neves FS, Melo SL, Campos PS, Haiter-Neto F. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115: 121-7. https://doi.org/10.1016/j.oooo.2012.10.003
- de-Azevedo-Vaz SL, Alencar PN, Rovaris K, Campos PS, Haiter-Neto F. Enhancement cone beam computed tomography filters improve in vitro periimplant dehiscence detection. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116: 633-9. https://doi.org/10.1016/j.oooo.2013.06.029
- de-Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos Kde F, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 550-6. https://doi.org/10.1016/j.oooo.2016.01.013
- Mengel R, Kruse B, Flores-de-Jacoby L. Digital volume tomography in the diagnosis of peri-implant defects: an in vitro study on native pig mandibles. J Periodontol 2006; 77: 1234-41. https://doi.org/10.1902/jop.2006.050424
- Pinheiro LR, Scarfe WC, de Oliveira Sales MA, Gaia BF, Cortes AR, Gusmao Paraiso Cavalcanti M. Effectiveness of periapical radiography versus cone beam computed tomography with different kilovoltage settings in the detection of chemically created peri-implant bone defects: an in vitro study. Int J Oral Maxillofac Implants 2017; 32: 741-50. https://doi.org/10.11607/jomi.5311
- Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-73. https://doi.org/10.1259/dmfr/30642039
- Kim JH, Arita ES, Pinheiro LR, Yoshimoto M, Watanabe PC, Cortes AR. Computed tomographic artifacts in maxillofacial surgery. J Craniofac Surg 2018; 29: e78-80. https://doi.org/10.1097/SCS.0000000000004088
- Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, et al. Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol 2014; 43: 20130088. https://doi.org/10.1259/dmfr.20130088
- Dave M, Davies J, Wilson R, Palmer R. A comparison of cone beam computed tomography and conventional periapical radiography at detecting peri-implant bone defects. Clin Oral Implants Res 2013; 24: 671-8. https://doi.org/10.1111/j.1600-0501.2012.02473.x
- Kuhl S, Zurcher S, Zitzmann NU, Filippi A, Payer M, Dagassan-Berndt D. Detection of peri-implant bone defects with different radiographic techniques - a human cadaver study. Clin Oral Implants Res 2016; 27: 529-34.
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-74. https://doi.org/10.2307/2529310
- Bohner LO, Tortamano P, Marotti J. Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters. Dentomaxillofac Radiol 2017; 46: 20160377. https://doi.org/10.1259/dmfr.20160377
- Bohner LO, Mukai E, Oderich E, Porporatti AL, Pacheco-Pereira C, Tortamano P, et al. Comparative analysis of imaging techniques for diagnostic accuracy of peri-implant bone defects: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124: 432-40.e5. https://doi.org/10.1016/j.oooo.2017.06.119
- Pauwels R, Silkosessak O, Jacobs R, Bogaerts R, Bosmans H, Panmekiate S. A pragmatic approach to determine the optimal kVp in cone beam CT: balancing contrast-to-noise ratio and radiation dose. Dentomaxillofac Radiol 2014; 43: 20140059. https://doi.org/10.1259/dmfr.20140059
- Ziefle M. Effects of display resolution on visual performance. Hum Factors 1998; 40: 554-68. https://doi.org/10.1518/001872098779649355
Cited by
- Diagnostic accuracy of imaging examinations for peri-implant bone defects around titanium and zirconium dioxide implants: A systematic review and meta-analysis vol.51, 2020, https://doi.org/10.5624/isd.20210120