• Title/Summary/Keyword: VOCs in air

Search Result 599, Processing Time 0.028 seconds

Analysis of the Emission Potential of Hazardous Pollutants Produced from disposal of the School Solid Wastes by Small-Scale Incinerator (학교 생활 쓰레기의 성분 분석과 소형소각로 운전에 따른 유해성 오염물의 배출 잠재성 분석 연구)

  • 이병규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • This study analyzed solid wastes generated from a school. The emission potential of hazardous pollutants generated from incineration of the school solid wastes (SSWs) was analyzed. Components of the SSWs were identified and the SSWs were classified into combustible and non-combustible wasts. The combustible wastes consisted of papers of 56.5^ plastics of 30.2% woods of 7.1% and fibers of 6.1% based on weight of the wastes. The moisture content and the ash content of the combustible wastes were 18~20% and 11~13% respectively. The combustible wastes of the SSWs were incinerated by using a small-scale incinerator. Fly and bottom ashes and volatile organic compounds (VOCs) were collected from the incineration. Also the metal leaching experiments on the fly and bottom ashes were performed, In analysis of metals leached from the ashes the total amounts of metals leached in the acid solution (pH=3) were much greater than those in the neutral solution (pH=5.8~6.2) For the same amounts of the fly and bottom ashes the total amounts of metals leached from the fly ashes were much greater than those from the bottom ashes. The VOCs produced from incineration of the SSWs consisted of aromatics of 42.1% aliphatic alkenes of 26.3% oxidized forms of 17.3% and aliphatic alkanes of 14.3% In addition the considerable amounts of hazardous air pollutants (e.g benzene chloro-benzene and chloro-alkanes) and compounds (e. g, aliphatic alkenes) with high potential of ozone or photochemical smog formation were identified from the incineration experiment of the SSWs.

  • PDF

Application of Field and Laboratory Emission Cell (FLEC) to Determine Formaldehyde and VOCs Emissions from Wood-Based Composites

  • Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.24-37
    • /
    • 2007
  • The Korean Ministry of Environment started controlling indoor air quality (IAQ) in 2004 through the introduction of a law regulating the use of pollutant emitting building materials. The use of materials with formaldehyde emission levels above $1.25 mg/m^2{\cdot}h$ (JIS A 1901, small chamber method) has been prohibited. This level is equivalent to the $E_2$ grade ($>5.0mg/{\ell}$) of the desiccator method (JIS A 1460). However, the $20{\ell}$ small chamber method requires a 7-day test time to obtain the formaldehyde and volatile organic compound (VOC) emission results from solid building interior materials. As a approach to significantly reduce the test time, the field and laboratory emission cell (FLEC) has been proposed in Europe with a total test time less than one hour. This paper assesses the reproducibility of testing formaldehyde and TVOC emissions from wood-based composites such as medium density fiberboard (MDF), laminate flooring, and engineered flooring using three methods: desiccator, perforator and FLEC. According to the desiccator and perforator standards, the formaldehyde emission level of each flooring was ${\le}E_1$ grade. The formaldehyde emission of MDF was $3.48 mg/{\ell}$ by the desiccator method and 8.57 g/100 g by the perforator method. To determine the formaldehyde emission, the peak areas of each wood-based composite were calculated from aldehyde chromatograms obtained using the FLEC method. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde were detected as aldehyde compounds. The experimental results indicated that MDF emitted chloroform, benzene, trichloroethylene, toluene, ethylbenzene, m,p-xy-lene, styrene, and o-xylene. MDF emitted significantly greater amounts of VOCs than the floorings did.

Synthesis and characterization of noble metal coupled N-TiO2 nanoparticles

  • Lee, Kyusang;Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.374.2-374.2
    • /
    • 2016
  • Volatile organic compounds (VOCs) in the atmosphere are harmful materials which influence indoor air environment and human health. Titanium dioxide ($TiO_2$) is photocatalyst extensively used in degradation of organic compound. To improve the photocatalytic activity in the visible light region, doping with non-metals element or loading noble metals on the surface of $TiO_2$ is generally proposed. In this study, N- doped $TiO_2$ having photocatalytic activity in visible light region was attached noble metal such as Pt, Ag, Pd, Au by coupling method. Catalytic activities of Noble metal coupled $N-TiO_2$ powders were evaluated by the improvement of their photocatalytic activities and the degradation of VOC gas. A UV-Vis spectrophotometer was used to measure the diffuse reflectance spectra of coupled $N-TiO_2$ sample. The photocatlytic activities of as prepared samples were characterized by the decoloration of aqueous MB solution under Xenon light source (UV and visible light). To measure of decomposition VOCs, ethylbenzene was selected for target VOC material and the concentration was monitored under UVLED irradiation in a closed chamber system. Adjusting the initial concentration of 10~12 ppm, to evaluate the removal characteristics by using the coupled $N-TiO_2$.

  • PDF

A Study on Predication model for TVOC Emissions of Finishing material in Apartment House (공동주택 건축내장재의 TVOC 방출량에 관한 예측모델 연구)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.55-62
    • /
    • 2002
  • While cognition about an environment pollution becomes important recently, the intense pollution measures about an indoor air environment is required. In the case of building indoor environment, over 80% of modem people is living in building and these days an interest of building interior materials which becomes a reason for indoor environmental pollution in public house, office, is increasing. An experimental measurement method of this study is as follows. (1) American EPA TO-17, ASTMD5116-97, measurement method in VOCs experiment of Japanese closet industrial association (2) 2.4-DNPH cartridge method in HCHO experiment, based on American EPA TO-11 and measurement method of Japanese closet industrial association (3) standard compound is analyzed by using HPLC after solvent extraction process (4) paint and furniture are selected as measurement objects (5) we also made small chamber to grasp an emission characteristic of HCHO and VOCs and to get an environment-amicable forecast model through it, then we developed the model which can forecast emission rate by chamber experiment.

Degradation of Acetaldehyde in the Gaseous Phase by combined Photocatalytic Ozonation (광촉매를 이용한 가스상 아세트알데히드 제거에 있어서 오존이 미치는 영향에 관한 연구)

  • 조기철;황경철
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.429-430
    • /
    • 2003
  • TiO$_2$를 이용한 휘발성 유기화합물(VOCs)의 광촉매적 제게에 관한 연구는 오염된 공기의 정화를 위한 대안적인 산화공정으로서 현재 많은 연구가 진행되어 오고 있다(A. J. Maira et al., 2001; Rosana M. Alberici and Wilson F. Jardim, 1997). 또한 가시광영역, 암반응 및 수분 등의 영향을 최소화하기 위해 금속 성분을 첨가하여 광촉매적 활성을 높이고자 여러 가지 시도들이 행해져 왔다(Akawat Sirisuk et al., 1999; John L. Falconer and Kimberley A. Magrini-Bair, 1998). (중략)

  • PDF

A Numerical Analysis of VOC Removal in Honeycomb Photocatalytic Reactor (벌집형 광촉매 반응기의 VOC 제거에 관한 수치해석적 연구)

  • 류무성;김창녕
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.385-386
    • /
    • 2003
  • 건축자재의 제작 및 도장공정, 합성수지 제조공정 등에서 많이 배출되는 휘발성 유기화합물(Volitile Organic Compounds, 이하 VOCs)은 이동성이 강하고 악취를 유발할 뿐만 아니라 마취성이 강하여 잠재적인 독성 및 발암성을 가진다. 이러한 VOCs의 제거방법 중 광촉매 제거법은 380 nm 이하의 자외선을 흡수하여 표면에서 생긴 전자와 정공으로 대부분의 유해물질을 제거하는 비교적 최근에 개발된 방법이다. 광촉매는 한번의 설치로 반영구적으로 사용할 수 있고 인체에 무해하며 유지비용이 적게 든다는 장점으로 인해 크게 부각되고 있다. (중략)

  • PDF

Distribution of the Sulfur Compounds and Volatile Organic Compounds in Yosu Industrial Area (여수산단주변지역의 황화합물 및 VOCs 농도분포)

  • 서성규;전준민;문정선;윤형선;정경훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.310-311
    • /
    • 2002
  • 악취는 인간이 직접 후각으로 느끼는 환경오염의 지표로서 극히 낮은 농도에서도 피해를 유발하여 대기질 전반에 대한 불신을 초래하게 된다. 악취의 주요 발생원으로는 정유공장, 화학공장, 하수처리장, 분뇨 및 축산폐수처리장, 쓰레기 매립지 등으로 발생원이 매우 다양하고 여러 가지 복합된 화합물이 원인이 되어 악취를 유발시키는 것이 특징이다. 우리나라의 주거여건은 주변환경을 충분히 고려하지 못한 개발로 공업지역과 주거지역이 근접 또는 혼재하여 악취오염에 근본적으로 취약한 구조의 도시가 형성된 곳도 있다. (중략)

  • PDF