• Title/Summary/Keyword: VOC 제거

Search Result 170, Processing Time 0.029 seconds

Fabrication of Honeycomb Adsorbents by Using the Ceramic Paper and Adsorption Characteristics of VOC (세라믹섬유지를 사용한 허니컴 흡착소자 제조 및 VOC 흡착특성)

  • Yoo, Yoon-Jong;Cho, Churl-Hee;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1035-1041
    • /
    • 2002
  • The adhesion characteristics of adsorbent during impregnation of Y-type and ZSM-5type zeolites into ceramic paper were analyzed, as the amount of silica sol in slurry for impregnation was varied. 31 wt% of zeolite particle, which is useful for VOC adsorption, was evenly dispersed and adhered on ceramic paper and original crystal structure of the zeolite remained unchanged even after binder application and heat treatment. Surface area of the impregnated ceramic paper was decreased compared with that of zeolite powder. And it was found to be attributed to the reduction of volume of mesopore while the volume of micropore under $20{\AA}$ was unchanged. Zeolite-impregnated honeycomb cylinder, whose diameter and length were 10 cm and 40 cm, respectively, was subjected to adsorption/desorption test with respect to toluene, MEK, cyclohexanone. All of the VOC's were removed by adsorption with efficiency higher than 97% and from the static adsorption test, $42 Nm^3/h$ of 300 ppmv-VOC-laden air was calculated be treated continuously, when the honeycomb was used in an adsorptive rotor system.

Effect of Gas Composition on Ozone Production in Dielectric Barrier Discharge Process (무성방전내에서 오존 발생에 미치는 가스 조성의 영향)

  • 조백근;이현돈;이석부;전현정;박정호;전기일;정재우
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.381-382
    • /
    • 2003
  • 오존은 여러 가지 산업적 응용분야를 가지고 있으며 특히, 광범위한 환경공학적 응용분야를 가지고 있다. 오존생성을 위해 개발된 무성방전 공정이 비교적 최근부터 악취 및 VOC를 포함한 대기오염 물질의 제거를 위해 활용되어오고 있으며 이러한 공정내에서 오존의 발생은 공정내의 오염물질 제거에 중요한 역할을 하게 된다. 따라서, 본 연구에서는 무성방전 공정에서 유입기체의 조성이 오존발생에 미치는 영향에 관해 알아보고자 하였다 (중략)

  • PDF

Removal of Volitile Organic Compounds Using UV and Non-thermal Plasma Technique(1) (저온플라즈마와 UV를 이용한 휘발성유기화합물 제거연구(1))

  • 이병규;정혁용
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.255-257
    • /
    • 1999
  • 휘발성 유기화합물(VOCs)은 오존 및 광화학 스모그의 전구물질 내지는 원인물질로써, NOx나 햇빛 등과 반응하여 2차 오염물들을 생성한다. 특히, Benzene이나 Chloroform과 같은 VOCs 물질들을 강력한 발암성 물질로 규제되고 있다. 이러한 VOCs는 차량운행, 인쇄, 도장산업, 각종 석유정제과정 및 취급과 정등에서 많이 발생하며, 우리 시민들에게 호흡기 질환을 일으키거나 시계를 흐리게 한다. 따라서 휘발성 유기화합물에 의한 악영향과 교통 및 각종 산업시설에서의 발생원 확인 및 제거에 대한 관심이 매우 높다.(중략)

  • PDF

A Study on Photocatalytic Degradation of Propylene on TiO$_2$ Thin Films (TiO$_2$ 박막의 Propylene 광촉매 분해 특성 연구)

  • 강진아;고성혁;윤승원;김대중;송재원;손건석;이귀영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.415-416
    • /
    • 2001
  • 최근 환경오염에 대한 관심이 고조되면서 VOCs를 비롯한 각종 악취물질 제거에 광촉매가 각광받고 있다. 광촉매는 기존 오염물질 제거기술과는 달리 광촉매 하나로서 복합적인 오염물질을 한꺼번에 분해할 수 있는 장점이 있다. 그러나 미세한 광촉매 분말(powder)은 오히려 분진으로 작용할 수 있고, 회수가 어려워 응용에 있어 상당한 제약을 받는다. 이에 상용화된 TiO$_2$ 분말이나 졸을 지지체에 코팅한 TiO$_2$ 박막으로 광촉매의 응용 범위를 점차 확대해 나가는 추세이다. (중략)

  • PDF

Removal of VOCs and H2S from Waste Gas with Biotrickling Filter (생물살수여과법을 이용한 공기중 VOC 및 H2S 제거)

  • Kim, Kyoung-Ok;Kim, Yong-Je;Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.519-525
    • /
    • 2008
  • Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.

Numerical simulation of VOC decomposition in an arc plasma reactor (수치해석 기법을 이용한 아크 플라즈마 반응기의 VOCs 분해성능 평가연구)

  • Park, Mi-jeong;Jo, Young-min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.1-7
    • /
    • 2016
  • A range of techniques have been being developed to remove the volatile organic compounds from paining processes. High temperature decomposition of harmful VOCs using arc plasma has recently been proposed, and this work analyzed the extreme hot process by computer-aided fluid dynamics prior to the reactor design. Numerical simulations utilized the conservation equations of mass and momentum. The simulation showed that the fluid flowed down along the inner surface of the centrifugal reactor by forming intensive spiral trajectories. Although the high temperature gas generated by plasma influences the bottom of the reactor, no heat transfer in radial direction appeared. The decomposition efficiency of a typical VOCs, toluene, was found to be a maximum of 67% across the reactor, which was similar to the value (approximately 70%) for the lab-scale test.

페인트 부스에 발생하는 VOC 가스의 활성탄에 의한 흡착 제거특성

  • 김민경;김정두;이동환;감상규;이민규
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.179-180
    • /
    • 2003
  • 자동차 도장 작업 시 배출되는 대표적인 용매물질인 부틸아세테이트, n-부탄올 및 톨루엔을 대상기체로 하여 활성탄에 의한 흡착 특성을 연구결과는 다음과 같았다. 처리대상가스의 유입농도가 증가할수록 파과시간은 점점 감소하였으며. 파과곡선의 기울기 또한 급격해졌다. 유량이 증가할수록 파과시간은 감소하였다.

  • PDF

Adsorption and Removal of Volatile Organic Compounds from Fabrics with β-Cyclodextrin Finish (직물의 β-cyclodextrin 가공에 따른 휘발성 유기성분의 흡착과 제거)

  • Chung, Haewon;Hwang, Nawon;Kim, Joo-Yeon;Shin, Seung-Yeop
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.113-123
    • /
    • 2013
  • Clothes that retain and emanate body odor feel uncomfortable and unclean; subsequently, the adsorption, desorption and removal amounts of malodorous compounds from fabrics with different polarities were examined. 1-Octen-3-one, octanal and isovaleric acid, which are important malodor compounds from the body, were used as volatile organic compounds (VOC). Samples were prepared with unfinished and ${\beta}$-CD finished cotton, nylon and PET fabrics. The amounts of VOCs retained on the fabrics were measured using headspace GC-MS; in addition, the odor intensity of the samples were evaluated by 10 trained panelists. The amounts adsorbed were estimated by weight gain; however, moisture was found to have a larger effect on the increase in weight than VOCs. The polarity of the VOCs decreased in the order of isovaleric acid, octanal and 1-octen-3-one. Despite the exceptionally large amounts of octanal adsorbed on the nylon sample, the amounts of malodorous compounds adsorbed on fabrics increased with the decreasing VOC molecular weight. The unfinished PET sample adsorbed more VOCs than the unfinished-fabric samples. The odor intensity was mostly weaker in the ${\beta}$-CD finished fabrics than in the unfinished fabrics. The odor intensity of the ${\beta}$-CD finished fabrics was lower than unfinished fabrics. The amount of VOCs that remained on the soiled fabric samples after storing in air for 24 hrs decreased with the increasing VOC vapor pressure. Most VOCs were removed by washing; however, more VOCs were left on the ${\beta}$-CD finished fabrics than unfinished fabrics. The intensity of the odor from the unfinished PET and ${\beta}$-CD finished fabrics was stronger and weaker, respectively, than that of other fabrics, even when the same amounts of VOCs remained.

A Study on Adsorbent Munufacture for Removal of VOC by Recycling of Paper Sludge and Red mud (제지슬러지와 적니를 이용한 VOC 제거를 위한 흡착제 개발 연구)

  • Min, Byong-Hun;Kim, Jeong-Ho;Chung, Chan-Kyo;Suh, Sung-Sup;Kang, Sung-Won
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • Recycling method of red mud, byproduct from the aluminium manufacturing process, and paper sludge was investigated in order for them to be utilized as the adsorbent for the removal of volatile organic components(VOCs). Either high density polyethylene(HDPE) or low density polyethylene(LDPE) was added to facilitate the manufacture of adsorbents. The utilization of HDPE in the adsorbents increased the adsorption capacity due to the good physical properties, such as, BET and true density, compared with LDPE. BET values of the manufactured adsorbents were much lower than the commercial activated carbon ($10^{-2}-10^{-3}$). It may be due to the fact that the time for decomposition of the paper sludge was not enough during the manufacturing of adsorbents. But the specific adsorption capacity of the manufactured adsorbents (mole adsorbed per unit surface area) had much higher value than the commercial activated carbon (10-100). Therefore, it is important that BET of manufactured adsorbents needs to be increased to obtain the same adsorption capacity as the commercial activated carbon.

  • PDF

Development of arc plasma for removal of high concentration VOCs (고온 아크 플라즈마를 이용한 고농도 VOCs 제거 기술 개발)

  • Hong, Seung Hyouk;Kim, Jae Gang;Lee, Joo Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.108-115
    • /
    • 2017
  • Generally, there are three ways to remove VOCs from the small painting booth; adsorption, burn and oxidation catalyst. RTO and RCO are high efficiency methods for removing VOCs. But they require large installation areas, which are not suitable for the small painting booth. And we need a new removing method because it is difficult to predict the A/C changing time and the recycle time. To solve these problems, we have developed the Arc plasma system which is simple and enable consecutive-use. It removes VOCs effectively and eco-friendly. In this study we have investigated the enrichment material and VOCs removal efficiency.