• Title/Summary/Keyword: VOC 제거

Search Result 170, Processing Time 0.027 seconds

담체교반시스템을 이용한 바이오필터의 막힘을 자동제어하는 기술

  • Lee, Tae-Ho
    • Environmental engineer
    • /
    • v.24 s.254
    • /
    • pp.54-59
    • /
    • 2007
  • 본 기술은 각종 산업시설과 환경 기초 시설로부터 대기중으로 배출되는 악취 및 휘발성 유기화합물(Volatile Organic Chemicals; VOC)을 미생물의 분해 작용을 활용하여 제거하는 장치로 오염 물질의 분해과정에서 미생물의 과다생장에 의한 악취 및 휘발성 유기화합물 제거장치의 막힘현상을 미생물 고정화 담체의 교반과 살수과정을 통해 담체표면의 생물막을 효과적으로 제거하는 방법을 이용하여 오염 가스속에 함유되어 있는 악취 및 휘발성 유기화합물을 효율적으로 제거할 수 있는 기술이다. 특히, 미생물 담체의 교반 장치는 미생물 고정화 담체를 교반시켜 생물막을 탈리 시킴으로써 미생물의 생장에 의한 막힘 현상과 이로 인한 압력 손실 증가와 악취 및 휘발성 유기화합물의 제거성능의 저하를 근본적으로 해결할 수 있다.

  • PDF

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Application of Biofilter for the Removal of VOCs Produced in the Remediation of Oil-Contaminated Soil (유류오염 토양의 복원과정에서 발생되는 휘발성 유기화합물의 제거를 위한 바이오필터의 적용)

  • Lee Eun Young;Choi Woo-Zin;Choi Jin-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • This research was investigated the applicability of the biofiltration technology for the removal of volatile organic carbons (VOCs) produced from the bioremediation of oil contaminated soil. Diesel was used as surrogate for oil and, two types of biofilter systems made of ceramic and polymer media were compared for the removal efficiencies of diesel VOCs at different inlet concentrations and space velocity (SV) conditions. During the first 30-d operation, the removal efficiencies of the biofilter packed with polymer and the biofilter packed with ceramic were investigated at constant SV of $153\;h^{-1}$ When inlet concentrations of diesel VOCs were below 10 ppmv, the average removal efficiencies of the polymer biofilter and the ceramic biofilter were average $67\%\;and\;75\%$, respectively. When the inlet concentration increased to 30 ppmv, the VOC removal efficiency in the polymer biofilter was $80\%$, while the average removal efficiency in the ceramic biofilter was $60\%. Effect of the inlet concentration and SV on the removal efficiency of total diesel VOCs was investigated. As SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of total diesel VOCs was decreased gradually. The average removal efficiency of the biofilter packed with polymer carrier was decreased from $82\%\;to\;80\%\;and\;77\%$. The biofilter packed with polymer carrier showed that the removal efficiency of benzene and toluene were maintained within the range of $81\%\~86\%$. In contrast, for the biofilter packed with ceramic carrier, when SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of benzene decreased from $87\%\;to79\%\;and\;74\% . respectively. The removal efficiency of toluene decreased from $80\%\;to\;77\%\;and\;76\%$ at SV of $153\;h^{-1},\;204\;h^{-1}\;and\;306\;h^{-1}$, and $306\;h^{-1}$, respectively.

A Numerical Analysis of the Abatement of VOC with Different Photocatalytic Honeycomb Filters (광촉매 필터형상에 따른 휘발성 유기화합물의 제거에 관한 수치해석적 연구)

  • 류무성;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study has been numerically conducted to investigate the removal efficiency of Volatile Organic Compound (VOC) for different photocatalytic honeycomb filters. Recently, the photocatalysis is being applied to air-cleaner, air-conditioner and vacuum-cleaner with the capability of air-purification, sterilization and antibiosis. However, photocatalysis is less efficient than other methods for removing VOC except in the case of low concentration. So far most of studies have focused on an improvement of the photocatalytic materials, but this study have placed emphasis on the improvements of shape of photocatalytic honeycomb filter. UV irradiation, concentration profile and pressure drop have been investigated for different cross sections of filters and for different filter lengths. Light intensity is dropped sharply with increasing distance from the UV-lamp, and becomes very low in the middle of the filters. Since photocatalytic reaction rate is a function of light intensity, VOC concentration gradient might be small in the middle of long filters. Thus, most of reaction have risen within only three times of dimensionless axial distance. These results can be used effectively for the design of advanced photocatalytic honeycomb filters.

Removal Characteristics of Hazard Organic Substances in the Multi-stage Ozone Contactor (다단오존접촉조에서 유해화학물질의 제거특성)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.41-49
    • /
    • 1999
  • The water treatment by was performed to remove VOC and organic substances in the multi-stage ozone contactor. Ozone is mainly utilized to change the chemical structures of organic substance, of which finally has the purpose to degrad them. The removal efficiency of VOC has 20~60% at the ozone concentration of 3 ppm, in case of trichloroethylene, its efficiency is reduced by 85% at the ozone contact time of 8 min. Design factors such as the number of stage, ozone concentration, zone contact time are determined for optimal treatment in the multi-stage contactor.

  • PDF

Removal of VOCs Using Nylon 6 fiber media Immobilized with Microorganisms (Nylon 6 fiber media를 이용한 Biofilter의 VOCS의 제거)

  • Kim, Jang-ho;Park, Dong-won;Kim, Hyoung-ho
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Biofiltration was successfully applied to treat a mixture of volatile organic compounds(benzene, xylene) from contaminated air stream. Immobilized Ps. oleovorans biofilter was evaluated for its value in simultaneous removal of benzene and xylene from waste air stream. The variety of operating conditions were tested to evaluate important factors such as space velocity, pH, water content, etc.

  • PDF

VOC 흡착 분말활성탄의 폭발특성

  • 김성규;이경덕;김영수;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.263-268
    • /
    • 2001
  • 휘발성유기화합물(Volatile Organic Compounds, VOC)은 연소배기가스중의 NOx, SOx와 함께 대기환경오염의 주 요인이 되는 물질로서, 제거방법의 하나로 활성탄 흡착법을 주로 사용한다. 흡착제로서 석탄이나 나무에서 제조된 활성탄(Activated Carbon)을 사용하는데, 활성탄 자체는 폭발하지 않으나 어느 정도 유기증기를 흡착하면 분산상태에서 폭발을 일으키는 것으로 알려져 있다 그러나, 국내에서 활성탄에 대한 연구는 자연발화위험성에 대해서만 연구가 진행되었을 뿐, 휘발성유기화합물이 흡착된 활성탄에 대한 연구는 전무한 상태이다.(중략)

  • PDF