• Title/Summary/Keyword: VIV

Search Result 131, Processing Time 0.04 seconds

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum (사봉형 스펙트럼을 이용한 라이저 피로해석 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser

  • Wang, Chunxiao;Wang, Yu;Liu, Yu;Li, Peng;Zhang, Xiantang;Wang, Fei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.223-235
    • /
    • 2021
  • The Vortex-Induced Vibration (VIV) test system on deepwater riser based on Bare Fiber Bragg Grating (BFBG) sensor technology was designed. Meanwhile, a riser VIV response numerical model was established based on the work-energy principle. The results show that the first-order vibration frequency dominates the vibration of the riser, and as the velocity increases, the dominant frequency of the riser gradually increases under the effect of different top tensions. At the same velocity, as the top tension increases step by step, the dominant frequency and fatigue damage at the same position along the axial length of the riser both gradually decreases. The model test and numerical simulation show a relatively consistent change, maintaining a high degree of agreement. The process control system based on BFBG of model test has excellent performance, and FBG sensors have great advantages in VIV test of a vertical riser in water.

Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges

  • Farhangdoust, Saman;Eghbali, Pejman;Younesian, Davood
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.313-320
    • /
    • 2020
  • The usage of conventional tuned mass damper (TMD) was proved as an effective method for passive mitigating vortex-induced vibration (VIV) of a bridge deck. Although a variety of linear TMD systems have been so far utilized for vibration control of suspension bridges, a sensitive TMD mechanism to wind spectrum frequency is lacking. Here, we introduce a bistable tuned mass damper (BTMD) mechanism which has an exceptional sensitivity to a broadband input of vortex shedding velocity for suppressing VIV in suspension bridge deck. By use of the Monte Carlo simulation, performance of the nonlinear BTMD is shown to be more efficient than the conventional linear TMD under two different wind load excitations of harmonic (sinusoidal) and broadband input of vortex shedding. Consequently, an appropriate algorithm is proposed to optimize the design parameters of the nonlinear BTMD for Kap Shui Mun Bridge, and then the BTMD system is localized for the interior deck of the suspension bridge.

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

An Agent Language for Real-Time Reactive Robotic Behavior Specification (실시간 반응형 로봇 행위 지정을 위한 에이전트 언어)

  • Kwak, Byul-Saim;Byun, Moo-Hong;Lee, Jae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.461-464
    • /
    • 2005
  • 본 논문에서는 실시간 반응형 로봇의 행위를 지정하기에 적합한 에이전트 언어를 소개한다. 기존의 BDI 기반의 에이전트 언어를 기반으로 실시간 반응형 로봇의 행위를 지정하는데 적합하도록 개발한 VivAce 에이전트 구조에 대해서 설명하고 이를 이용한 간단한 시뮬레이션을 수행하였다. 또한 VivAce 가 기존의 BDI 에이전트 언어에 비해서 가지는 새로운 특징인 자바 네이티브 언어 지원, 쓰레드 기반의 계획 실행, 다양한 인터페이스를 소개한다.

  • PDF

Cross flow response of a cylindrical structure under local shear flow

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • The VIV (Vortex-Induced Vibration) analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.