• Title/Summary/Keyword: VIBRATION

Search Result 25,068, Processing Time 0.05 seconds

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Validity of Linear Combination Approach based on Net Damping Analysis of Cable-Damper System (케이블-댐퍼 시스템의 전체감쇠비 해석을 통한 선형조합 접근법의 유효성)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.467-475
    • /
    • 2009
  • Existing studies have suggested Universal Curve only for supplemental damping by damper. Therefore net damping has been determined by means of arithmetic summation between intrinsic, aero-damping of cable and supplemental damping of damper. However linear combination approach by means of the arithmetic summation is not enough theoretical background. So validity of this approach should be verified in order to design adequate cable-damper system by engineers. This study establishes governing differential equation which can consider intrinsic, aero-damping and supplemental damping as well. And also analysis method is solved by combination of muller method and successive iteration method. Consequently, this study succeeds in verification for validity of linear combination approach. As a result of this study, linear combination approach is limitedly effective in case of low stiffness and optimum damping coefficient of damper, short distance from support to damper, lower vibration mode, low aero-damping, and normal windy environment. Whereas this study will be effective in case of opposite conditions, and existing studies or linear combination approach occur to further error. Meaning of this study presents exact solution for net damping of cable-damper system, and verifies linear combination approach by means of the analysis method. In the future, if monitoring of optimum damping coefficient of a damper against aero-damping is feasible on time, algorithm of this study will be available for control of cable and semi-active damper system such as magneto-rheological damper.

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Study on the Quantitative Analysis of the Major Environmental Effecting Factors for Selecting the Railway Route (철도노선선정에 영향을 미치는 주요환경항목 정량화에 관한 연구)

  • Kim, Dong-ki;Park, Yong-Gul;Jung, Woo-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.761-770
    • /
    • 2009
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land ransportation systems. In a preliminary feasibility study stage and selection of optimal railway route, the energy efficiency and problems related to environment are usually considered. For the selection of optimal railway route, geographical features and facility of management are generally considered. Environment effect factors for the selection of environment-friendly railway router are focused and studied in this paper. In this study, various analysis of opinion of specialists (railway, environment, transport, urban planning, survey) and the guideline for construction of environment-friendly railway were accomplished. From these results of various analysis, 7 major categories (topography/geology, flora and fauna, Nature Property, air quality, water quality, noise/vibration, visual impact/cultural assets) were extracted. To select environment friendly railway route, many alternatives should be compared optimal route must be selected by a comprehensive assessment considering these 7 categories. To solve this problem, the selected method was AHP which simplifies the complex problems utilizing hierarchy, quantifying qualitative problems through 1:1 comparison, and extracting objective conclusions by maintaining consistency. As a result, a GUIbased program was developed which provides basic values of weighted parameters of each category defined by specialists, and a quantification of detailed assessment guidelines to ensures consistency.

A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads Considering Running Safety (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim, Jeong-il;Yang, Sin-Chu;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.299-309
    • /
    • 2006
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

Dynamic Performance Estimation of the Incrementally PSC Girder Railway Bridge by Modal Tests and Moving Load Analysis (다단계 긴장 PSC 거더 철도교량의 동특성 실험 및 주행열차하중 해석에 의한 동적성능 평가)

  • Kim, Sung Il;Kim, Nam Sik;Lee, Hee Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.707-717
    • /
    • 2006
  • As an alternative to conventional prestressed concrete (PSC) girders, various types of PSC girders are either under development or have already been applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to the design concept, these new types of PSC girders have the advantages of requiring less self-weight while having the capability of longer spans. However, the dynamic interaction between bridge superstructures and passing trains is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate modal parameters of newly designed bridges before doing dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied, in order to obtain precise frequency response functions and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage. With the application of reliable properties from modal experiments, estimation of dynamic performances of PSC girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of moving train. Dynamic displacements, impact factor, acceleration of the slab, end rotation of the girder, and other important dynamic performance parameters are checked with various speeds of the train.

Effectiveness of an extraoral cold and vibrating device in reducing pain perception during deposition of local anesthesia in pediatric patients aged 3-12 years: a split-mouth crossover study

  • Ashveeta Shetty;Shilpa S Naik;Rucha Bhise Patil;Parnaja Sanjay Valke;Sonal Mali;Diksha Patil
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.6
    • /
    • pp.317-325
    • /
    • 2023
  • Background: Local anesthetic injections may induce pain in children, leading to fear and anxiety during subsequent visits. Among the various approaches recommended to reduce pain, one is the use of a Buzzy BeeTM device that operates on the concept of gate control theory and distraction. The literature regarding its effectiveness during the deposition of local anesthesia remains limited; hence, the aim of the present study was to determine the efficacy of extraoral cold and vibrating devices in reducing pain perception during the deposition of local anesthesia. Methods: A split-mouth crossover study in which 40 children aged 3-12 years requiring maxillary infiltration or inferior alveolar nerve block for extractions or pulp therapy in the maxillary or mandibular posterior teeth were included. The control intervention involved the application of topical anesthetic gel for one minute (5% lignocaine gel), followed by the administration of local anesthetic (2% lignocaine with 1:80,000 adrenaline) at a rate of 1 ml/ minute. Along with the control protocol, the test intervention involved using the Buzzy BeeTM device for 2 minutes before and during the deposition of the local anesthetic injection. The heart rate and face, legs, arms, cry, and consolability revised (FLACC-R) scale scores were recorded by the dentist to assess the child's pain perception. Results: The mean age of the participants in Group A and Group B was 7.050 ± 3.12 years and 7.9 ± 2.65 years respectively. A reduction in the mean heart rate and FLACC-R score was observed during the deposition of local anesthetic solution in the tissues when the Buzzy BeeTM was used in both groups at different visits in the same subjects (P < 0.05) The Buzzy BeeTM device was effective in reducing the heart rate and FLACC-R scores when used during maxillary infiltration and inferior alveolar nerve block local anesthesia techniques (P < 0.05). Conclusion: The use of extraoral cold and vibrating devices significantly reduces pain perception during local anesthetic deposition in pediatric patients. Considering the results of this study, the device may be incorporated as an adjunct in routine dental practice while administering local anesthesia in children.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

A Study on the Selection of Hydrogen Refueling Station Locations within Military Bases Considering Minimum Safe Distances between Adjacent Buildings (인접 건물 간 최소 안전거리를 고려한 군부대 내 수소충전소 위치선정 연구)

  • Dong-Yeon Kim;Hyuk-Jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.171-180
    • /
    • 2023
  • Hydrogen energy technology is gaining importance in the era of the Fourth Industrial Revolution, offering military advantages when applied to military vehicles due to its characteristics such as reduced greenhouse gas emissions, noise, and low vibration. Korea's military has initiated the Army Tiger 4.0 plan, focusing on hydrogen application, downsizing, and AI-based smart features. The Ministry of National Defense plans to collaborate with the Ministry of Environment to expand hydrogen charging stations nationwide, anticipating increased deployment of military hydrogen vehicles. However, considering the Jet Fire and VCE(Vapor Cloud Explosion) nature of hydrogen, ensuring safety during installation is crucial. Current military guidelines specify a minimum safety distance of 2m from adjacent buildings for charging stations. Scientific methods have been employed to quantitatively assess the accident damage range of hydrogen, proposing a minimum safety distance beyond the affected area.