• 제목/요약/키워드: VGG19

검색결과 51건 처리시간 0.02초

저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가 (Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images)

  • 김두빈;박영준;홍주완
    • 한국방사선학회논문지
    • /
    • 제16권4호
    • /
    • pp.411-417
    • /
    • 2022
  • 본 연구에서는 저선량 흉부 CT 영상을 이용하여 VGGNet을 학습시키고 폐기종 검출 모델을 구현하고 성능을 확인하고자 한다. 연구에 사용된 저선량 흉부 CT 영상은 정상 진단 8000장, 폐기종 진단 3189장이며, 모델 학습을 위해 정상 데이터와 폐기종 데이터를 train, validation, test dataset으로 각각 60%, 24%, 16%로 무작위 추출하여 구분하였다. 학습을 위한 인공신경망은 VGGNet 중 VGG16과 VGG19를 사용하였으며, 학습이 완료된 모델 평가를 위해 정확도, 손실율, 오차 행렬, 정밀도, 재현율, 특이도, F1-score의 평가지표를 사용하였다. 폐기종 검출 정확도와 손실율은 VGG16과 VGG19 각각 92.35%, 95.88%, 0.21%, 0.09%, 정밀도는 91.60%, 96.55%, 재현율은 98.36%, 97.39%, 특이도는 77.08%, 92.72%, F1-score는 94.86%, 96.97%였다. 위의 평가지표를 통해 VGG19 모델의 폐기종 검출 성능이 VGG16 모델에 비해 우수하다고 판단된다. 본 연구를 통해 VGGNet과 인공신경망을 이용한 폐기종 검출 모델 연구에 기초자료로 사용할 수 있을 것으로 사료된다.

전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석 (Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates)

  • 예철수;안영만;백태웅;김경태
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1111-1123
    • /
    • 2023
  • 원격탐사 영상을 이용한 지표 속성의 변화를 모니터링 하기 위해서 딥러닝(deep learning) 모델을 이용한 의미론적 영상 분할 방법이 최근에 널리 사용되고 있다. 대표적인 의미론적 영상 분할 딥러닝 모델인 UNet 모델을 비롯하여 다양한 종류의 UNet 기반의 딥러닝 모델들의 성능 향상을 위해서는 학습 데이터셋의 크기가 충분해야 한다. 학습 데이터셋의 크기가 커지면 이를 처리하는 하드웨어 요구 사항도 커지고 학습에 소요되는 시간도 크게 증가되는 문제점이 발생한다. 이런 문제를 해결할 수 있는 방법인 전이학습은 대규모의 학습 데이터 셋이 없어도 모델 성능을 향상시킬 수 있는 효과적인 방법이다. 본 논문에서는 UNet 기반의 딥러닝 모델들을 대표적인 사전 학습 모델(pretrained model)인 VGG19 모델 및 ResNet50 모델과 결합한 세 종류의 전이학습 모델인 UNet-ResNet50 모델, UNet-VGG19 모델, CBAM-DRUNet-VGG19 모델을 제시하고 이를 건물 추출에 적용하여 전이학습 적용에 따른 정확도 향상을 분석하였다. 딥러닝 모델의 성능이 학습률의 영향을 많이 받는 점을 고려하여 학습률 설정에 따른 각 모델별 성능 변화도 함께 분석하였다. 건물 추출 결과의 성능 평가를 위해서 Kompsat-3A 데이터셋, WHU 데이터셋, INRIA 데이터셋을 사용하였으며 세 종류의 데이터셋에 대한 정확도 향상의 평균은 UNet 모델 대비 UNet-ResNet50 모델이 5.1%, UNet-VGG19 모델과 CBAM-DRUNet-VGG19 모델은 동일하게 7.2%의 결과를 얻었다.

전이 학습을 이용한 VGG19 기반 말라리아셀 이미지 인식 (Malaria Cell Image Recognition Based On VGG19 Using Transfer Learning)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.483-490
    • /
    • 2022
  • 말라리아는 기생충에 의해 발생하는 질병으로 전 세계에 퍼져있다. 말라리아 셀을 인식하는데 일반적으로 두꺼운 혈흔과 얇은 혈흔 검사 방법이 사용되지만 이러한 방법은 많은 수작업 계산이 필요하여 효율성과 정확성이 매우 낮을 뿐만 아니라 빈민국에는 병리학자가 부족하여 말라리아 치명율이 높다. 본 논문에서는 특징 추출기, 잔류 구조와 완전 연결층으로 구성되고, 전이 학습을 이용한 말라리아셀 이미지를 인식하는 모델을 제안한다. VGG-19 모델의 사전 학습된 파라미터가 사용될 때 일부 컨볼루션층의 파라미터는 고정되고, 모델의 데이터에 맞추기 위하여 미세조정이 사용된다. 그리고 제안된 모델과 비교하기 위하여 잔류 구조가 없는 말라리아셀 인식 모델을 구현한다. 실험 결과 잔류 구조를 사용한 모델이 잔류 구조가 없는 모델에 비하여 성능이 우수 하였으며, 최신 논문과 비교하여 가장 높은 97.33%의 정확도를 보여주었다.

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

심층 신경망 기반의 생활폐기물 자동 분류 (Object classification for domestic waste based on Convolutional neural networks)

  • 남준영;이혜민;;;;문현준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.83-86
    • /
    • 2019
  • 도시화 과정에서 도시의 생활폐기물 문제가 빠르게 증가되고 있고, 효과적이지 못한 생활폐기물 관리는 도시의 오염을 악화시키고 물리적인 환경오염과 경제적인 부분에서 극심한 문제들을 야기시킬 수 있다. 게다가 부피가 커서 관리하기 힘든 대형 생활폐기물들이 증가하여 도시 발전에도 방해가 된다. 생활폐기물을 처리하는데 있어 대형 생활폐기물 품목에 대해서는 요금을 청구하여 처리한다. 다양한 유형의 대형 생활폐기물을 수동으로 분류하는 것은 시간과 비용이 많이 든다. 그 결과 대형 생활폐기물을 자동으로 분류하는 시스템을 도입하는 것이 중요하다. 본 논문에서는 대형 생활폐기물 분류를 위한 시스템을 제안하며, 이 논문의 4 가지로 분류된다. 1) 높은 정확도와 강 분류(roust classification) 수행에 적합한 Convolution Neural Network(CNN) 모델 중 VGG-19, Inception-V3, ResNet50 의 정확도와 속도를 비교한다. 제안된 20 개의 클래스의 대형 생활폐기물의 데이터 셋(data set)에 대해 가장 높은 분류의 정확도는 86.19%이다. 2) 불균형 데이터 문제를 처리하기 Class Weight VGG-19(CW-VGG-19)와 Extreme Gradient Boosting VGG-19 두 가지 방법을 사용하였다. 3) 20 개의 클래스를 포함하는 데이터 셋을 수동으로 수집 및 검증하였으며 각 클래스의 컬러 이미지 수는 500 개 이상이다. 4) 딥 러닝(Deep Learning) 기반 모바일 애플리케이션을 개발하였다.

  • PDF

수목 동정을 위한 수피 분류 데이터셋 구축과 합성곱 신경망 기반 53개 수종의 동정 모델 개발 (Construction of a Bark Dataset for Automatic Tree Identification and Developing a Convolutional Neural Network-based Tree Species Identification Model)

  • 김태경;백규헌;김현석
    • 한국산림과학회지
    • /
    • 제110권2호
    • /
    • pp.155-164
    • /
    • 2021
  • 자연환경에 대한 국민들의 관심 증가로 스마트폰과 같은 휴대용 기기를 이용한 수목 동정의 자동화에 대한 요구가 증가하고 있다. 최근 딥러닝 기술의 발전에 힘입어, 외국에서는 수목 인식 분야에의 적용이 활발하게 이루어지고 있다. 수목의 분류를 위해 꽃, 잎 등 다양한 형질들을 대상으로 연구가 진행되고 있지만, 접근성을 비롯한 여러 장점을 가진 수피의 경우 복잡도가 높고 자료가 부족하여 연구가 제한적이었다. 본 연구에서는 국내에서 흔히 관찰 가능한 수목 54종의 사진자료를 약 7,000 여장 수집 및 공개하였고, 이를 해외의 20 수종에 대한 BarkNet 1.0의 자료와 결합하여 학습에 충분한 수의 사진 수를 가지는 53종을 선정하고, 사진들을 7:3의 비율로 나누어 훈련과 평가에 활용하였다. 분류 모델의 경우, 딥러닝 기법의 일종인 합성곱 신경망을 활용하였는데, 가장 널리 쓰이는 VGGNet (Visual Geometry Group Network) 16층, 19층 모델 두 가지를 학습시키고 성능을 비교하였다. 또한 본 모형의 활용성 및 한계점을 확인하기 위하여 학습에 사용하지 않은 수종과 덩굴식물과 같은 방해 요소가 있는 사진들에 대한 모델의 정확도를 확인하였다. 학습 결과 VGG16과 VGG19는 각각 90.41%와 92.62%의 높은 정확도를 보였으며, 더 복잡도가 높은 모델인 VGG19가 조금 더 나은 성능을 보임을 확인하였다. 학습에 활용되지 않은 수목을 동정한 결과 80% 이상의 경우에서 같은 속 또는 같은 과에 속한 수종으로 예측하는 것으로 드러났다. 반면, 이끼, 만경식물, 옹이 등의 방해 요소가 존재할 경우 방해요소가 자치하는 비중에 따라 정확도가 떨어지는 것이 확인되어 실제 현장에서 이를 보완하기 위한 방법들을 제안하였다.

A Deep Learning Approach for Covid-19 Detection in Chest X-Rays

  • Sk. Shalauddin Kabir;Syed Galib;Hazrat Ali;Fee Faysal Ahmed;Mohammad Farhad Bulbul
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.125-134
    • /
    • 2024
  • The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.

다양한 CNN 모델을 이용한 얼굴 영상의 나이 인식 연구 (A study on age estimation of facial images using various CNNs (Convolutional Neural Networks))

  • 최성은
    • Journal of Platform Technology
    • /
    • 제11권5호
    • /
    • pp.16-22
    • /
    • 2023
  • 얼굴 영상으로부터 나이를 인식하는 기술의 응용분야가 증가함에 따라 이에 대한 연구가 활발히 진행되고 있다. 얼굴 영상으로부터 나이를 인식하기 위해서는 나이를 표현하는 특징을 추출하고, 추출된 특징으로 나이를 정확하게 분류하는 기술이 필요하다. 최근 영상 인식 분야에서 다양한 CNN 기반 딥러닝 모델이 적용되어 성능이 크게 개선되고 있으며, 얼굴 나이 인식 분야에서도 성능 개선을 위해 다양한 CNN 기반 딥러닝 모델이 적용되고 있다. 본 논문에서는 다양한 CNN 기반 딥러닝 모델의 얼굴 나이 인식 성능을 비교하는 연구를 수행하였다. 영상 인식 분야에서 많이 활용되고 있는 AlexNet, VGG-16, VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152를 활용하여 얼굴 나이 인식을 위한 모델을 구성하고 성능을 비교하였다. 실험 결과에서 ResNet-34를 이용한 얼굴 나이 인식 모델의 성능이 가장 우수하다는 것을 확인하였다.

  • PDF

앙상블 학습 알고리즘을 이용한 컨벌루션 신경망의 분류 성능 분석에 관한 연구 (A Study on Classification Performance Analysis of Convolutional Neural Network using Ensemble Learning Algorithm)

  • 박성욱;김종찬;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.665-675
    • /
    • 2019
  • In this paper, we compare and analyze the classification performance of deep learning algorithm Convolutional Neural Network(CNN) ac cording to ensemble generation and combining techniques. We used several CNN models(VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogLeNet) to create 10 ensemble generation combinations and applied 6 combine techniques(average, weighted average, maximum, minimum, median, product) to the optimal combination. Experimental results, DenseNet169-VGG16-GoogLeNet combination in ensemble generation, and the product rule in ensemble combination showed the best performance. Based on this, it was concluded that ensemble in different models of high benchmarking scores is another way to get good results.

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.