• 제목/요약/키워드: VELOCITY PATTERN

검색결과 943건 처리시간 0.028초

누운 자세에서 조기재활 자전거 시스템의 하지 운동 근 활성도 분석 (Muscle Activity Analysis of Lower Limb Training for Early Rehabilitation Cycling System in Supine Position)

  • 신선혜;서신배;유미;정호춘;조광수;홍정표;홍철운;권대규
    • 한국정밀공학회지
    • /
    • 제33권9호
    • /
    • pp.753-760
    • /
    • 2016
  • This study was undertaken to develop a bed-type cycling system of lower limbs for rehabilitation. This system consists of two modes of cycling: active and passive. Different velocity and loads are provided for improving the muscle function recovery and increasing the muscular strength. To analyze the muscle activity pattern, we measured muscular activity of lower limbs in the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL), while cycling in the supine position, and based on the pedaling direction. A total of 18 young and 23 elderly, healthy subjects participated in this study. Muscle activity of MG muscles was significantly different in the two age groups. This study could provide the reference data to develop cycling exercises for lower limbs during rehabilitation of the elderly patients.

계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동 (Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar)

  • 신형섭;오상엽;최수용;서창민;장순남
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

진해만 조류 및 취송류의 3차원 수치모형실험 (Three-Dimensional Numerical Model Experiments of Tidal and Wind-Driven Currents in Chinhae Bay)

  • 김차겸
    • 한국해양학회지
    • /
    • 제29권2호
    • /
    • pp.95-106
    • /
    • 1994
  • 김 등 (1993)에 의해 개발된 3차원 해수유동 수치모델을 사용하여 진해만의 조류 및 취송류를 해석하였다. 만내의 흐름은 주로 지형, 바람 및 하천유출에 의해 지배되 며, 만 입구의 수로보다 내만에서 바람 의 영향을 더 강하게 받는다. 계산된 조류는 현장관측과 잘 일치한다. 조류 및 조석잔차류의 수평 및 연직 유속은 만 입구의 수로 에서는 강하나, 진해만의 서부해역과 북부해역에서는 상대적으로 약하게 일어났다. 저 층과 표층 사이에 유속우 위상차가 일어나며, 위상차는 소조기보다 소조기보다 대조기 에 더 뚜렷하게 나타났다. 또한 만내에서 표층흐름은 바람 및 하천유출류에 의해 강하 게 지배되며, 이러한 현상은 대조기보다 소조기에 더 뚜렷하게 나타났다.

  • PDF

도로터널 제트팬 모형 실험 (The Jet-fan Model Test for a Road Tunnel Ventilation)

  • 류재홍;유용호;김진
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.630-640
    • /
    • 2003
  • As tunnel ventilation has recently been playing a major role in the tunnel construction and maintenance, longitudinal ventilation systems with jet fans have been utilized a great deal because they are economical and effective. However, due to the length of tunnels and heavy traffic, it is hard to take the field measurements. In this study, therefore, the computer simulation and the model experiment of producing a wind tunnel were carried out simultaneously and the results were compared. The ultimate objective of this research was to interpret the air flow pattern inside the tunnel with a jet-fan was set up, and to offer the useful data for jet-fan installation and operation. The experiment was carried out with varying the jet-fan diameters, location of installation, the discharge velocity. Result showed that as the initial static pressure came up with the negative pressure, the tunnel air flowed into the inside of tunnel from outside due to the entrainment-effect and the backflow-phenomenon by separation-effect was observed in the lower half part of the tunnel. As the jet-fan was getting closer to the tunnel wall, the entrainment-effect caused by the interaction with the wall was increased; however, the mixing distance and irregular flow section became longer, and also the air pressure loss generated by wall friction was large.

국내 우수선수들의 철봉 Kolman 기술 동작 분석 (Motion Analysis of Kolman Technique by Korean Top Gymnasts on Horizontal Bar)

  • Lim, Kyu-Chan;Lee, Nam-Koo
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.283-289
    • /
    • 2021
  • Objective: The aim of this study was to analyze the pattern of Kolman technique by five Korean top gymnasts including the three national athletes on horizontal bar. Method: Two digital high-speed camcorders were used with 90 frames/sec and their Kolman motions were filmed in sports science secondary school gymnasium at U city. After the kinematic and kinetic variables were carried out by Kwon3D 3.1 motion package during the whole phase, the optimized release motion was investigated by simulating the body COG path during the aerial phase. Results: Firstly, it was revealed that the average changes of hip, shoulder joint angle were 84 deg, 53 deg respectively during the functional sub-phase and the average swing phaseal time was 1.21 s. Secondly, it was revealed that the average body COG positions and velocities (Y, Z) at release were -0.65 m, 0.48 m, 1.65 m/s, 3.97 m/s respectively and the average release angle, peak height and flight time were 67 deg, 1.29 m, 0.79 s respectively. Thirdly, it was revealed that the directions of somersault of whole and lower body, tilt of lower body were counterclockwise, whereas the directions of tilt of whole body, twist of whole and lower body were clockwise at the ready for re-grasp. Lastly, it was revealed that the body COG paths were different from each other during the aerial phase followed by the different body COG velocities. Conclusion: Korean gymnasts of this study controlled their motions well in terms of the timing of hip·shoulder joint, body position, body angular momentum especially during the functional sub-phase, but their motions were different during the aerial phase. Nonetheless most of them made the adequate body position at the instant of re-grasp. It would be suggested that Korean gymnasts except S3 should increase the vertical velocity.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • 지질공학
    • /
    • 제31권3호
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

네트워크 특징에 따른 수질-수리 제약조건 기반 상수도관망 다목적 최적 설계 기술개발 (Development of multi-objective optimal design approach for water distribution systems based on water quality-hydraulic constraints according to network characteristic)

  • 고문진;최영환
    • 한국수자원학회논문집
    • /
    • 제55권1호
    • /
    • pp.59-70
    • /
    • 2022
  • 상수도관망은 대표적인 사회기반시설로 수원에서 수용가에게 물을 공급하는 과정에서 병원성 미생물을 소독하기 위해 염소를 주입한다. 안전한 물의 공급을 위해 잔류염소 농도 기준(0.1-4.0 mg/L)을 유지하도록 규정하고 있으나, 사용자의 사용 패턴, 수령, 상수도관망의 형식 및 특징은 수리학적(i.e., 절점의 압력, 관로의 유속) 및 수질적(i.e., 잔류염소 농도) 특징에 영향을 미친다. 따라서, 본 연구에서는 Multi-objective Harmony Search (MOHS)를 사용하여 수질-수리 인자를 고려한 상수도관망 최적 설계 기법을 개발하였다. 설계인자로는 설계비용과 시스템 탄력성을 고려하였으며, 절점의 압력과 잔류염소 농도를 제약조건으로 적용하였다. 도출된 최적설계안은 상수도관망의 형식 및 특징에 따라 분석하였다. 이러한 최적설계안은 경제적인 측면과 수질 측면의 안전성을 충족할 수 있으며, 사용자의 사용성을 증가시킬 수 있다.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구 (Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology)

  • 하주환;박소담;이학지;신석윤;변창우
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

2D TOF 자기공명 혈관조영술에서 동맥혈류의 역류로 인한 영상훼손과 이의 제거 (Artifacts due to Retrograde Flow in the Artery and Their Elimination in 2D TOF MR Angiography)

  • 정관진;이종권;김선경;박성홍
    • Investigative Magnetic Resonance Imaging
    • /
    • 제5권1호
    • /
    • pp.38-42
    • /
    • 2001
  • 2D TOF혈관조영술에서 presaturation RF펄스를 사용하여 정맥피에서 나오는 MR신호를 제거하고 얻은 동맥 angiogram에는 band형태로 동맥이 끊어져 나타나는 현상이 자주 보인다. 일부 동맥에서 피의 흐름은 한 심장 주기 동안에 3번의 펄스를 갖는데, 이 중 가운데 펄스는 짧은 기간 동안 역류를 한다. 이 역류하는 동맥피는 정맥피와 같은 방향이기 때문에 presaturation RF펄스에 의해 정맥피 처럼 saturation이 되어서 imaging slice로 흘러 들어가게 될 수 있다. 특히 이러한 경우가 phase encoding step의 dc 부근에서 발생하게 되면 그 때의 단면 영상에서 동맥이 강조가 될 수 없게 되어, 결과적으로 angiogram에는 그 단면을 지나는 동맥의 신호가 없어서 band 형태로 핏줄이 끊어져 나타나게 된다. Imaging slice와 saturation band와의 간격을 변화 시켜 가면서 angiogram을 얻어 봄으로서 이러한 현상을 실험적으로 확인하였다 나아가 saturation band를 rectangle형태에서 ramp 형태로 변경함으로써 이러한 artifacts를 제거 할 수 있는 방법을 제시하였다

  • PDF