• Title/Summary/Keyword: VELOCITY

Search Result 23,171, Processing Time 0.044 seconds

Study on the velocity of gadolinium atomic vapor produced by electron beam heating (전자빔 가열로 발생시킨 Gd 원자증기의 속도에 관한 연구)

  • 정의창;권덕희;고광훈;김택수
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • The velocity of gadolinium(Gd) atomic vapor vaporized by an electron beam was measured by a microbalance. The velocity of about 900 ㎧ was obtained at an evaporation surface temperature of 2400-2500 K. The measured value was approximately 100 ㎧ faster than the maximum velocity of an ideal monatomic gas in an adiabatic expansion. This phenomenon can be explained that the internal energy of Gd atoms populated in higher excited levels at the high temperature should be convened to kinetic energy during adiabatic expansion. The calculated velocity agrees with the measured one when 100 excited energy levels are included in an enthalpy term for the velocity calculation. The characteristics of vapor flow as a function of heated surface temperature are also reported.

Ballisitic Limit Velocity Comparison for Warship Materials against AK-47 7.62mm MSC (적성소화기 위협에 대한 함정용 선체재질별 방호한계속도 비교 연구)

  • Kim, Jong-Hwan;Shin, Yun-ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.286-293
    • /
    • 2017
  • This paper presents ballistic limit velocity results of a variety of materials generally used in warships. Ballistic limit velocity is the velocity required for a projectile to penetrate a target with 50 percents of time and is widely used as a measure of armour bulletproofing. For this study, live fire experiments were implemented using AK-47 $7.62{\times}9mm$ mild steel core as a projectile as well as various thickness warship materials as a target. Also, methods of MIL-STD-662F, NIJ-STD-0101.06 and support vector machine were applied to measure the ballistic limit velocity and then their results were graphically analyzed for comparison. The minimum of their results was considered as the ballistic limit velocity in a conservative way.

Effects on the Washboarding Phenomenon Based on the Size of the Rotating Body Using a Discrete Element Method (이산요소법을 이용한 회전체의 크기에 따른 Washboarding 현상에 대한 영향 분석)

  • Lee, Seoungjun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.25-32
    • /
    • 2021
  • Washboarding is a crucial problem occurring on unpaved roads. This phenomenon involves the formation of ripples on the surface of the unpaved road and causes a critical problem to vehicles and riders. The phenomenon is affected by several parameters, but we focused on the velocity and the size of the rotating body. In the precedent research, we observed that a critical velocity existed for the occurrence of the phenomenon, and the phenomenon's grade was related to the velocity. Therefore, this study, using a discrete element method, aimed to analyze the relation between the velocity and the size of the rotating body for the occurrence of the phenomenon and perform a fast Fourier transform (FFT) analysis to determine the correlation between the phenomenon and the period. The study observed that the critical velocity could vary from the velocity and the size of the rotating body, and there was a certain range of frequency for the occurrence of the Washboarding phenomenon.

Analysis ofriverflow using the ADCP postprocessing software (adcptools) (ADCP 후처리 소프트웨어(adcptools)를 이용한 하천 흐름 분석)

  • Lee, Chanjoo;Kim, Jong Pil;Park, Edward;Kastner, Karl
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.103-115
    • /
    • 2016
  • At present, an acoustic Doppler current profiler (ADCP) is one of the most suitable tools for measurement of three dimensional flow characteristics in the river. The data resulting from this approach can be used for flow visualization and velocity mapping together with post-processing software tools. Among them, 'adcptools' is the latest one and provides more realistic velocity distribution in the cross-section since it uses velocity along the beam direction. In this study, a flow analysis was made using the 'adcptools' for the Amazon River and the Han River dataset. Discharge was recalculated and accuracy of discharge and velocity was evaluated. Streamwise velocity distribution and secondary flow pattern in cross-sections were visualized. Geo-referenced velocity distribution was also mapped. A summary with future prospect of 'adcptools' for studies on fluvial geomorphology is briefly given.

Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

  • Moon, Jihyun;Cho, Yuri;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

The Effect of an 8-week Velocity-based Training on Mechanical Power of Elite Sprinters (8주간 속도 기반 트레이닝이 단거리 육상선수의 순발력에 미치는 영향)

  • Jae Ho Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.18-24
    • /
    • 2024
  • Objective: The purpose of this study was to evaluate the effects of an 8-week velocity-based training on the maximum vertical jump in elite sprinters. Method: Ten elite sprinters were participated in this study (age: 21 ± 0.97 yrs., height: 179 ± 3.54 cm, body mass: 72 ± 2.98 kg). An 8-week velocity-based power training was provided to all subjects for twice per week. Their maximum vertical jumps were measured before and after velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: There were no statistically significant differences were found between pre and post the training (p>.05). However, most variables included jump record, knee joint ROM, and muscle activation of rectus femoris showed increased pattern after the training. Conclusion: In this study, an 8-week velocity-based training did not showed the significant training effects. However, knee joint movement which is the key role of the vertical jump revealed positive kinematic and kinetic pattern after the training. From this founding, it is believed that velocity-based training seems positively affect the vertical jump which is the clear measurement of mechanical power of sprinter. In addition, to get more clear evidence of the training more training period would be needed.

Searching of Biomechanical Determination Factor for Improving Club Head Speed during the Driver Swing in Male Golf Players (남자 골프선수의 드라이버 스윙 시 클럽 헤드 스피드 향상을 위한 운동역학적 결정요인 탐색)

  • Jae-Woo Lee;Young-Suk Kim;Jun-Sung Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Objective: The aim of this study was to identify the biomechanical determination factor for improving club head speed during the driver swing in male golf players. Method: Twenty-seven golf players were participated in this study. Eight motion capture cameras (250 Hz) and two force plates (2,000 Hz) were used to collect peak angular velocity and ground reaction force data. It was performed stepwise multiple linear regression analysis and alpha set at .05. Results: The peak plantar flexion angular velocity of the left ankle joint and the peak adduction angular velocity of the right shoulder joint were statistically significant. The peak plantar flexion angular velocity of the left ankle joint and the peak adduction angular velocity of the right shoulder during downswing. Conclusion: It is suggested that applying body conditioning training aimed at improving related body functions to increase maximum plantar flexion angular velocity in the left ankle joint will be effective in improving club head speed.

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Analysis of Typhoon for Design of Sea-Dike (방조제의 설계를 위한 태풍의 분석)

  • 한상욱;이중기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4089-4095
    • /
    • 1976
  • The safety of shore structure including the sea dipe is largely affected by typhoon. Accordingly it is desirable to analize the typhoon and determine the wind direction and velocity for use in planning and design of the structure. This method was adopted for the design of the Yong San Gang Estuary Dam. A comparative study of the results of typhoon analysis with the meteorological data obtained through actual observation is summarized as follows; (1) 62% of the typhoons occur during May to June in a year, and 62% of the typhoons which have an influence on the Korean peninsula, especially the proposed estuary dam fsite, proceed eastward through the zone in lat. 36$^{\circ}$-37$^{\circ}$N. Such typhoons occur two to three times a year on the average. (2) Data on typhoon "SARL" were used as a model case in designing the estuary dam, where it was proved that a southwesterly wind had a maximum velocity of 30m/sec in case r=150km, ${\alpha}$=120$^{\circ}$. Within the range of 22$^{\circ}$30'on the right and left side of the fetch line of the estuary dam, the wind direction varied SSW\longrightarrowSW\longrightarrowWSW, and the wind velocity varied 29m/sec\longrightarrow30m/sec\longrightarrow125m/sec. Such phenomemum lasted for five hours. (3) An analysis of data obtained during 44 years at Mok Po Meteorological Station shows that a wind with a velocity of some 25m/sec occurred twelve times in the S-direction and two times in the SW-direction, while that with a velocity of 30m/sec occurred three times in the S-direction, three times in the SSW-direction and one time in the SW-direction. The wind which had an influence on the estuary dam had a direction of SSW\longrightarrowSW\longrightarrowWSW and a velocity of min. 30m/sec. Actually, a wind with a max. velocity of 31.3m/sec occurred in the SSW-direction on March 15 and 16, 1956 where the mean velocity during two hours was 28m/sec and that during four hours was 24.6m/sec. (4) The data obtained through actual observation show that when the velocity is low, the wind with a fixed direction lasts long, and when the velocity is high, it is short-lived. It is difficult to determine the velocity of a wind which blows in a fixed direction for consecutive two or four hours. Therefore, the values obtained through typhoon analysis are larger that those obtained through actual observation, and hence, it is resonable to use the analyzed valuse for design of the estuary dam and shore structures. (5) The greatest effect was had on the estuary dam when typhoon was proceeding at a velocity of 29.71m/sec in the direction of ${\alpha}$=120$^{\circ}$(SW) at a point of R=150km from the center of the typhoon.

  • PDF