• Title/Summary/Keyword: VDF함수

Search Result 8, Processing Time 0.028 seconds

Parameter Estimation & Validation of Volume-delay Function based on Traffic Survey Data (교통조사를 통한 도로통행비용함수 구축 및 검증)

  • Kim, Ju-Yeong;Chu, Sang-Ho;Gang, Min-Gu;Heo, Heon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.115-124
    • /
    • 2010
  • VDF(volume-delay function) is one of the most important factor to improve the reliability of traffic demand estimation because it is for estimation of link travel time based on the traffic volume variation. Because VDF of link except for freeway is applied as the parameter of BPR(bureau of public road) of U.S., it causes to deteriorate the accuracy of traffic demand estimation. The purpose of this paper is to establish new parameter of VDF based on the real-surveyed traffic data in order to improve the problem of the existing VDF. We suggest the reclassification of road hierarchy, the approach of traffic survey, the estimating method of VDF parameter, and the improvements of new VDF application. The new VDF allows us to estimate more realistic traffic situation in parts of demand, travel time and path between origin-destination.

Relaxation phenomena of electro-optic coefficient in P(VDF-TrFE) copolymers (강유전성 고분자인 P(VDF-TrFE)공중합체의 전기광학계수의 완화현상)

  • 임종선;박광서
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Relaxation phenomena of the electro-optic coefficient in ferroelectric copolymer P (VDF- TrFE) were studied. The electro-optic coefficient of copolymers was measured by simple reflection method and the decay curves were fitted by KWW stretched exponentials. The copolymers poled near Tc. Were shown to be more stable than the copolymer poled at lower temperatures. Further, the relaxation time t depending on temperature was found to follow Arrhenius behavior and it was found that the activation energy of 50/50 mol% P (VDF-TrFE) copolymer is larger than that of 72/28 mol% copolymer. As a result, the ferroelectric copolymer with VDF of 50 mol% is was more stable.stable.

  • PDF

Preparation and Characterization of Proton Conducting Crosslinked P(VDF-co-CTFE)-MAA/SEMA membranes (수소이온 전도성 가교된 P(VDF-co-CTFE)-MAA/SEMA 막 제조 및 분석)

  • Patel, Rajkumar;Lei, Zeng Xiao;Heo, Sung Yeon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.290-296
    • /
    • 2013
  • Poly(vinylidenefluoride-co-chlorotrifluoroethylene) P(VDF-co-CTFE) polymer was attached to methacrylic acid (MAA) in the presence of 1,8-diazabicyclo[5,4,0]undec-7-ene(DBU) catalyst to prepare P(VDF-co-CTFE)-MAA copolymer. The modified P(VDF-co-CTFE)-MAA was polymerized with 2-sulfoethyl methacrylate (SEMA) monomer in the presence of 4',4'-azobis(4-cyanovaleric acid(ACVA) initiator by free radical polymerization to form the proton conducting membrane. The ratio of the SEMA was increased in the membrane to increase the presence of the acidic group. The maximum IEC value that was observed at 50% SEMA was around 0.82 meq/g, which is consistent with the water uptake value. The highest proton conductivity achieved by P(VDF-co-CTFE)-MAA/SEMA membrane with 50% SEMA was approximately 0.041 S/cm. This indicates that the available ionic group for the proton conduction increases with the increase in the SEMA in the membrane.

Local Obstacle Avoidance Method of Mobile Robot Using Virtual Distance Function (가상 거리 함수를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • 임춘환;김성철;편석범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.67-75
    • /
    • 1998
  • This paper presents a new robot motion planning method for moving obstacle avoidance. To consider the mobility of a moving obstacle, we define virtual distance function(VDF) between the robot and the obstacle. At each sampling time, we use the VDF to construct an artificial potential, considering the motion of obstacles. The robot moves according to the repulsive and attractive force vector induced by the artificial potential function. The proposed algorithm can be driven the robot to avoid moving obstacles in real time. Some simulation studies show the effectiveness of the proposed method.

  • PDF

A Study on Differences of Economic Benefits by Volume Calibration in Road Construction Projects (도로시설 규모산정에 있어서 교통량 정산과정에 따른 경제적 편익 차이에 관한 연구)

  • Kim, Sang-Gu;Kim, Geun-Deok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.7-16
    • /
    • 2009
  • This paper proposes a plan which can raise the accuracy of economic benefit estimation in road construction projects. The point of existing economic appraisals may be that the speeds forecasted by models are different from the field speeds because only volumes are calibrated in the road network. The result of such a calibration has an influence on estimating wrong economic benefits in terms of vehicle operating cost savings, travel time savings, and air pollution savings. Then this study performs a calibration when volumes are at the same amount but the calibration between the field speeds and model speeds is different from each other with two different volume-delay functions; the differences of benefits are confirmed according to two different speed calibrations. Three improvement schemes, including the development of a new volume-delay function, are proposed in this study in order to solve the problem of current benefit calculations. The outcome of this study will help practitioners perform more accurate benefit calculations and reasonable economic appraisals.

A Volume-Delay Function Parameter Estimation and Validation for Traffic Assignment (도로 통행지체함수의 파라미터 추정 및 검증)

  • Lim, Yong-Taek;Kang, Min-Gu;Choo, Sang-Ho;Lee, Sang-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.17-29
    • /
    • 2008
  • A volume-delay function(VDF) has been used to describe the relation between traffic volumes and delay experienced by travelers on the roads traveling from origin to destination, which has been usually adopted in traffic assignment. For the purpose of more precise description of traffic pattern, we have to estimate the parameters of VDF in advance. This paper presents a methodology for estimating the parameters, which combined with golden section method. By using the method we have estimated the parameters with real data based on KTDB(2006), and validated them. Compared to the existing values of the parameters, newly estimated values are found to be closer to real world.

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.