• Title/Summary/Keyword: VCS main product

Search Result 3, Processing Time 0.016 seconds

Performance Evaluation of VLBI Correlation Subsystem Main Product (VLBI 상관 서브시스템 본제품의 제작현장 성능시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Oyama, Tomoaki;Park, Sun-Youp;Kang, Yong-Woo;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.322-332
    • /
    • 2011
  • In this paper, we introduce the 1st performance evaluation of VLBI Correlation Subsystem (VCS) main product, which is core system of Korea-Japan Joint VLBI Correlator (KJJVC). The main goal of the 1st performance evaluation of VCS main product is that the perfection of overall system will be enhanced after checking the unsolved part by performing the experiments towards various test items at the manufacturer before installation of field. The functional test was performed by including the overflow problem occurred in the FFT re-quantization module due to the insufficient of effective bit at the VCS trial product in this performance test of VCS main product. Through the performance test for VCS main product in the factory, the problem such as FFT re-quantization discovered at performance test of VCS trial product in 2008 was clearly solved and the important functions such as delay tracking, daly compensation, and frequency bining were added in this VCS main product. We also confirmed that the predicted correlation results (fringe) was obtained in the correlation test by using real astronomical observed data(wideband/narrow band).

INSTALLATION AND PERFORMANCE VERIFICATION OF VLBI CORRELATION SUBSYSTEM (VLBI 상관서브시스템의 현장설치 및 시험결과 고찰)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Park, Sun-Youp;Kang, Yong-Woo;Oh, Chung-Sik;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • In this paper, we describe the installation of VLBI Correlation Subsystem (VCS) main product and its performance at the Korea-Japan Correlation Center (KJCC). The VCS main product was installed at KJCC in August 2009. For the overall performance evaluation of VCS, playbacks, Raw VLBI Data Buffer (RVDB) system, and Data Archive (DA) system were installed together. The VCS main product was connected between RVDB and DA, and the correlation results were put into the DA to confirm the normal operation of VCS 16 station mode configuration. The evaluation test was first performed with 4 station mode, same as the factory test of VCS main product. Based on the results of 4 station mode, the same evaluation test was conducted for 16 station mode of VCS. We found that the correlation results of VCS were almost similarly compared to those of the Mitaka FX Correlator. Through the test results, we confirmed that the problems such as spectrum errors, delay parameter processing module and field programmable gate array errors in antenna unit, which were generated at the factory test of VCS main product, were clearly solved. And we verified the performance and connectivity of VCS by obtaining the expected correlation results and we also confirmed that the performance of VCS was sufficient for real VLBI observation data in both 4 and 16 station modes.

A STUDY ON DEVELOPMENT OF VLBI CORRELATION SUBSYSTEM TRIAL PRODUCT (VLBI상관서브시스템 시작품의 개발에 관한 연구)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Hyun-Soo;Lee, Chang-Hoon;Kobayashi, Hideyuki;Kawaguchi, Noriyuki;Kawakami, Kazuyuki
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.65-81
    • /
    • 2009
  • We present the performance test results of VLBI Correlation Subsystem (VCS) trial product which was being developed for 1 year from August 2007. It is a core component of Korea-Japan Joint VLBI Correlator (KJJVC). The aim for developing VCS trial product is to improve the performance of VCS main product to reduce the efforts and cost, and to solve the design problems by performing the preliminary test of the manufactured trial product. The function of VCS trial product is that it is able to process the 2 stations-1 baseline, 8 Gbps/station speed, 1.2 Gbps output speed with FX-type. VCS trial product consists of Read Data Control Board (RDC), Fourier Transform Board (FTB), and Correlation and Accumulation Board (CAB). Almost main functions are integrated in the FTB and CAB board. In order to confirm the performance of VCS trial product functions, the spectral analysis, delay compensation and correlation processing experiments were carried out by using simulation and real observation data. We found that the overflow problem of re-quantization after FFT processing was occurred in the delay compensation experiment. We confirmed that this problem was caused by valid bit-expression of the re-quantized data. To solve this problem, the novel method will be applied to VCS main product. The effectiveness of VCS trial product has been verified through the preliminary experimental results, but the overflow problem was occurred.