• Title/Summary/Keyword: VCO (Voltage-Controlled Oscillator)

Search Result 265, Processing Time 0.027 seconds

X-band CMOS VCO for 5 GHz Wireless LAN

  • kim, Insik;Ryu, Seonghan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.172-176
    • /
    • 2020
  • The implementation of a low phase noise voltage controlled oscillator (VCO) is important for the signal integrity of wireless communication terminal. A low phase noise wideband VCO for a wireless local area network (WLAN) application is presented in this paper. A 6-bit coarse tune capacitor bank (capbank) and a fine tune varactor are used in the VCO to cover the target band. The simulated oscillation frequency tuning range is from 8.6 to 11.6 GHz. The proposed VCO is desgned using 65 nm CMOS technology with a high quality (Q) factor bondwire inductor. The VCO is biased with 1.8 V VDD and shows 9.7 mA current consumption. The VCO exhibits a phase noise of -122.77 and -111.14 dBc/Hz at 1 MHz offset from 8.6 and 11.6 GHz carrier frequency, respectively. The calculated figure of merit(FOM) is -189 dBC/Hz at 1 MHz offset from 8.6 GHz carrier. The simulated results show that the proposed VCO performance satisfies the required specification of WLAN standard.

Reconfigurable MMIC VCO Design for Wireless Ubiquitous Communications (무선 유비쿼터스 통신을 위한 재구성 MMIC VCO 설계)

  • Kang, Jeong-Jin;Kim, Wan-sik;Lee, Dong-Joon;Rothwell, Edward J
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 2008
  • Reconfigurable radio technology is needed to reconstruct frequency and modem functionality, which can be different within various regions. In addition, it makes it possible for a single mobile handset to support various standards of wireless communication, and thus plays a key role inmobile convergence. A MMIC VCO(Monolithic Microwave Integrated Circuit Voltage Controlled Oscillator) has been developed to produce high power and wide bandwidth that adapts the Clapp-Gouriet type oscillator for series feedback. We were fabricated based on the 0.15um pHEMT from TRW. The MMIC VCO was connected to an alumina substrate on the carrier for testing. This MMIC VCO module shows good performance when compared with existing VCOs. Futhermore, it has potential as a reconfigurable MMIC VCO for ubiquitous communications such as LMDS (Local Multipoint Distribution Service), VSAT, Point to Point Radio and SATCOM.

  • PDF

A Design of Differential Voltage Clamped VCO for Improved Characteristics of Operating Frequency (개선된 동작 주파수 특성을 갖는 차동 전압 클램프 VCO 설계)

  • Kim, D.G.;Oh, R.;Woo, Y.S.;Sung, Man-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3181-3183
    • /
    • 2000
  • As the fact that the simple data of text and sound in early year have been changed to be high quality images and sounds. PLL(Phase-Locked Loop) system plays an important role in communication system. VCO(Voltage Controlled Oscillator) is the most important part in PLL system because it can have critical effects on operation of PLL. Recently, it has been raised the necessity of high speed and high accuracy circuit application. In this paper, a new differential voltage clamped VCO using negative-skewed path is suggested. Using a dual-delay scheme to implement the VCO, higher operation frequency and wider tuning are achieved simultaneously. The dual-delay scheme means that both the negative skewed delay paths and the normal delay paths exist in the same ring oscillator. The negative skewed delay paths decrease the unit delay time of the ring oscillator below the single inverter delay time. As a result, higher operation frequency can be obtained. The whole characteristics of VCO are simulated by using HSPICE. Simulation results show that the resulting operating frequencies are 50% higher than those obtainable from the conventional approaches.

  • PDF

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

Design of charge pump circuit for analog memory with single poly structure in sensor processing using neural networks

  • Chai, Yong-Yoong;Jung, Eun-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • We describe a charge pump circuit using VCO (voltage controlled oscillator) for storing information into local memories in neural networks. The VCO is used for adjusting the output voltage of the charge pump to the reference voltage and for reducing the fluctuation generated by the clocking scheme. The charge pump circuit is simulated by using Hynix 0.35um CMOS process parameters. The proposed charge pump operates properly regardless to the temperature and the supply voltage variation.

Effects of the length the MSL on the oscillation characteristic of the VCO (VCO의 MSL길이가 발진특성에 미치는 영향)

  • 이동희;정진휘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.721-724
    • /
    • 2001
  • In this paper, we present the effect the length the MSL(Microstrip Line) on the oscillation characteristic of the fabricated VCOs(Voltage Controlled Oscillator) designed and analyzed by RF circuit simulator Serenade(ANSOFT Co.) and fabricated by screen printing method on the alumina substrate. We have fabricated VCOs with 3 different MSL length and each MSL length of the VCO is 140mi1, 280mil and 560mi1. The oscillation frequency of each sample(VCO) was tuned to UHF band(750MHz∼900MHz) varying the capacitance. The experimental result shows the phase noise -82∼-97[dBc/Hz] at a 50 [kHz] offset frequency, the pushing figure 94∼318[kHz] at 3${\pm}$0.15[V] and the harmonics 13∼21 [dBc] between MSL length 140mi1s and 560mi1. The frequency and output variation width are 779∼898[MHz], -36∼-33[dBm] at MSL length 140mi1; 818∼836[MHz], -27.19∼-27.06[dBm] at 280mi1;751.54∼751.198[MHz],-33.44∼ -33.31[dBm] at 560mi1. we examined 3 VCOs oscillation characteristic difference through comparison with phase noise, oscillation power and frequency by control voltage change, harmonics and pushing figure for each sample.

  • PDF

Low cost 2.4-GHz VCO design in 0.18-㎛ Mixed-signal CMOS Process for WSN applications (저 가격 0.18-㎛ 혼성신호 CMOS공정에 기반한 WSN용 2.4-GHz 밴드 VCO설계)

  • Jhon, Heesauk;An, Chang-Ho;Jung, Youngho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.325-328
    • /
    • 2020
  • This paper demonstrated a voltage-controlled oscillator (VCO) using cost-effective (1-poly 6-metal) mixed signal standard CMOS process. To have the high-quality factor inductor in LC resonator with thin metal thickness, patterned-ground shields (PGS) was adopted under the spiral to effectively reduce the ac current of low resistive Si substrate. And, because of thin top-metal compared with that of RF option (2 ㎛), we make electrically connect between the top metal (M6) and the next metal (M5) by great number of via array along the metal traces. The circuit operated from 2.48 GHz to 2.62 GHz tuned by accumulation-mode varactor device. And the measured phase noise of LC VCO has -123.7 dBc/Hz at 1MHz offset at 2.62 GHz and the dc-power consumption shows 2.07 mW with 1.8V supply voltage, respectively.

L-band Voltage Controlled Oscillator for Ultra-Wideband System Applications (초광대역 응용 시스템을 위한 L밴드 전압제어발진기 설계)

  • Koo Bonsan;Shin Guem-Sik;Jang Byung-Jun;Ryu Keun-Kwan;Lee Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.820-825
    • /
    • 2004
  • In this paper an octave tuning voltage controlled oscillator which is used in set-top TV tuner was designed. Oscillation frequency range is 0.9 GHz~2.2 GHz with 1.3 GHz bandwidth. By using 4 varactor diodes in base and emitter of transistor, wide-band tuning, sweep linearity and low phase noise could be achieved. Designed VCO requires a tuning voltage of 0 V ~ 20 V and DC consumption of 10 V and 15 mA. Designed VCO exhibits an output power of 5.3 dBm $\pm$1.1 dB and a phase noise below -94.8 dBc/Hz @ 10 kHz over the entire frequency range. The sweep linearity shows 65 MHz/V with a deviation of $\pm$10 MHz.

Design of the Voltage-Controlled Sinusoidal Oscillator Using an OTA-C Simulated Inductor

  • Park, Ji-Mann;Chung, Won-Sup;Park, Young-Soo;Jun, Sung-Ik;Chung, Kyo-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.770-773
    • /
    • 2002
  • Two sinusoidal voltage-controlled oscillators using linear operational transconductance amplifiers are presented in this paper: One is based on the positive-feedback bandpass oscillator model and the other on the negative-feedback Colpitts model. The bandpass VCO consists of a noninverting amplifier and a current-controlled LC-tuned circuit which is realized by two linear OTA's and two grounded capacitors, while the Colpitts VCO consists of an inverting amplifier and a current-controlled LC-tuned circuit realized by three linear OTA's and three grounded capacitors. Prototype circuits have been built with discrete components. The experimental results have shown that the Colpitts VCO has a linearity error of less than 5 percent, a temperature coefficient of less than rm 100 ppm/$^{circ}C$, and a $pm1.5 Hz $frequency drift over an oscillation frequency range from 712Hz to 6.3kHz. A total harmonic distortion of 0.3 percent has been measured for a 3.3kHz oscillation and the corresponding peak-to-peak amplitude was 1V. The experimental results for bandpass VCO are also presented.

  • PDF

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.