• Title/Summary/Keyword: VCO (Voltage-Controlled Oscillator)

Search Result 265, Processing Time 0.025 seconds

A Wideband Clock Generator Design using Improved Automatic Frequency Calibration Circuit (개선된 자동 주파수 보정회로를 이용한 광대역 클록 발생기 설계)

  • Jeong, Sang-Hun;Yoo, Nam-Hee;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.451-454
    • /
    • 2011
  • In this paper, a wideband clock generator using novel Automatic frequency calibration(AFC) scheme is proposed. Wideband clock generator using AFC has the advantage of small VCO gain and wide frequency band. The conventional AFC compares whether the feedback frequency is faster or slower then the reference frequency. However, the proposed AFC can detect frequency difference between reference frequency with feedback frequency. So it can be reduced an operation time than conventional methods AFC. Conventional AFC goes to the initial code if the frequency step changed. This AFC, on the other hand, can a prior state code so it can approach a fast operation. In simulation results, the proposed clock generator is designed for DisplayPort using the CMOS ring-VCO. The VCO tuning range is 350MHz, and a VCO frequency is 270MHz. The lock time of clock generator is less then 3us at input reference frequency, 67.5MHz. The phase noise is -109dBC/Hz at 1MHz offset from the center frequency. and power consumption is 10.1mW at 1.8V supply and layout area is $0.384mm^2$.

A Class-C type Wideband Current-Reuse VCO With 2-Step Auto Amplitude Calibration(AAC) Loop (2 단계 자동 진폭 캘리브레이션 기법을 적용한 넓은 튜닝 범위를 갖는 클래스-C 타입 전류 재사용 전압제어발진기 설계)

  • Kim, Dongyoung;Choi, Jinwook;Lee, Dongsoo;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.94-100
    • /
    • 2014
  • In this paper, a design of low power Current-Reuse Voltage Controlled Oscillator (VCO) which has wide tuning range about 1.95 GHz ~ 3.15 GHz is presented. Class-C type is applied to improve phase noise and 2-Step Auto Amplitude Calibration (AAC) is used for minimizing the imbalance of differential VCO output voltage which is main issue of Current-Reuse VCO. The mismatch of differential VCO output voltage is presented about 1.5mV ~ 4.5mV. This mismatch is within 0.6 % compared with VCO output voltage. Proposed Current-Reuse VCO is designed using CMOS $0.13{\mu}m$ process. Supply voltage is 1.2 V and current consumption is 2.6 mA at center frequency. The phase noise is -116.267 dBc/Hz at 2.3GHz VCO frequency at 1MHz offset. The layout size is $720{\times}580{\mu}m^2$.

Broadband VCO Using Electronically Controlled Metamaterial Transmission Line Based on Varactor-Loaded Split-Ring Resonator (Varactor-Loaded Split-Ring Resonator(VLSRR) 기반의 가변 Metamaterial 전송 선로를 이용한 광대역 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.54-59
    • /
    • 2007
  • In this paper, broadband voltage-controlled oscillator (VCO) using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator (VLSRR) is presented. First, it is demonstrated that VLSRR coupled to microstrip line can lead to metamaterial transmission line with tuning capability. The negative effective permeability is provided by the VLSRR in a narrow band above the resonant frequency, which can be bias controlled by virtue of the presence of varactor diodes. The VCO with 1.8 V power supply has phase noise of $-108.84\;{\sim}\;-106.84\;dBc/Hz$ @ 100 Hz in the tuning range, $5.47\;{\sim}\;5.84\;GHz$. The figure of merit (FOM) called power-frequency-tuning-normalized (PFTN) is 20.144 dB.

Implementation and Design of the Voltage Controlled Oscillator Using Ring type DGS Resonator (링형 DGS 공진기를 이용한 전압제어 발진기의 설계 및 구현)

  • Kim, Girae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2589-2594
    • /
    • 2012
  • In this paper, a novel resonator using ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8 GHz band is designed using proposed DGS resonator. The ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8 GHz, 7.6 dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. We designed the voltage controlled oscillator using proposed the DGS resonator with varactor diodes placed between gaps of DGS. Thus, due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Analysis of Phase Noise in Frequency Synthesizer with DDS Driven PLL Architecture (DDS Driven PLL 구조 주파수 합성기의 위상 잡음 분석)

  • Kwon, Kun-Sup;Lee, Sung-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1272-1280
    • /
    • 2008
  • In this paper, we have proposed a phase noise model of fast frequency hopping synthesizer with DDS Driven PLL architecture. To accurately model the phase noise contribution of noise sources in frequency hopping synthesizer, they were investigated using model of digital divider for PLL, DAC for DDS and Leeson's model for reference oscillator and VCO. Especially it was proposed that the noise component of low pass filter was considered together with the phase noise of VCO. Under assuming linear operation of a phase locked loop, the phase noise transfer functions from noise sources to the output of synthesizer was analyzed by superposition theory. The proposed phase noise prediction model was evaluated and its results were compared with measured data.

A CMOS 5.4/3.24-Gbps Dual-Rate CDR with Enhanced Quarter-Rate Linear Phase Detector

  • Yoo, Jae-Wook;Kim, Tae-Ho;Kim, Dong-Kyun;Kang, Jin-Ku
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.752-758
    • /
    • 2011
  • This paper presents a clock and data recovery circuit that supports dual data rates of 5.4 Gbps and 3.24 Gbps for DisplayPort v1.2 sink device. A quarter-rate linear phase detector (PD) is used in order to mitigate high speed circuit design effort. The proposed linear PD results in better jitter performance by increasing up and down pulse widths of the PD and removes dead-zone problem of charge pump circuit. A voltage-controlled oscillator is designed with a 'Mode' switching control for frequency selection. The measured RMS jitter of recovered clock signal is 2.92 ps, and the peak-to-peak jitter is 24.89 ps under $2^{31}-1$ bit-long pseudo-random bit sequence at the bitrate of 5.4 Gbps. The chip area is 1.0 mm${\times}$1.3 mm, and the power consumption is 117 mW from a 1.8 V supply using 0.18 ${\mu}m$ CMOS process.

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

Nonlinearity Correction Method in FMCW Laser Range Finder (FMCW 레이저 거리 측정기의 비선형성 보정 방법)

  • Jung, Soo-Yong;Lee, Seong Ro;Jeong, Min A;Park, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.351-358
    • /
    • 2013
  • We propose a correction method of nonlinear frequency sweep in an FMCW(Frequency Modulated Continuous Wave) laser range finder. FMCW laser range finder requires linear frequency sweep for high resolution, and nonlinear frequency sweep makes the system performance degrade. In general, VCO(Voltage Controlled Oscillator) which is a component used for frequency modulation in FMCW method has nonlinear property. To correct the nonlinear frequency sweep, we utilize an auxiliary delay structure for generating trigger signal of ADC(Analog to Digital Converter). Because the trigger signal has same rate of change with the beat signal, the nonlinearity of the beat signal can be corrected. the experimental results show that the proposed method effectively eliminates the nonlinear frequency sweep problem and enhances the system performance.

A Study on the Design of VCO Used in the Spectrum Analyzer (스펙트럼 분석기용의 전압제어발진기에 관한 연구)

  • Sakong, Sug-Jin;Choe, Han-Gyu;Cha, Gyun-Hyeon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 1985
  • The modulo PLL was applied to the implementation of frequency synthesis with the narrow channel spacing, many channels and three different frequency bands. So , VCO (voltage controlled oscillator) designed In this paper is suitable for the device with three different frequency bands 10Hz, 40Hz, 400Hz channel spacing, and 512 channels.

  • PDF

A study on the Development of Frequency Modulated Continuous Wave Radar for Distance Measurement (거리 측정용 주파수 변조 연속파 레이더 개발에 관한 연구)

  • Park, Dong-Kook;Han, Tae-Kyoung;Lee, Hyun-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1005-1010
    • /
    • 2005
  • In this paper, it is presented a frequency modulated continuous wave radar (FMCW) for distance measurement. The frequency range is $10{\sim}11$ GHz and the sweep time of the signal is 100 ms. The test target is 0.8 m2 of metal plate. The experiment is performed in open ground and the pyramidal horn antenna of about 22 dBi gain is used. The beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is not good such as about 10 cm. It is result from the nonlinear signal of voltage controlled oscillator (VCO). To improve the nonlinear characteristic of VCO, a high pass filter and phase locked loop (PLL) frequency synthesizer are included in the radar system.

  • PDF