• Title/Summary/Keyword: VB-C receptor

Search Result 6, Processing Time 0.021 seconds

Functions of Virginiae Butanolide C(VB-C) and Receptor in Virginiamycin Production (Virginiamycin 생산유도에 관여하는 Virginiae Butanolide C(VB-C) 및 Receptor의 기능)

  • 김현수;현지숙
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 1997
  • Streptomyces virginiae produces a set of autoregulators termed virginiae butanolide A-E(VB-A-E) which trigger virginiamycin production, and possesses a high-affinity virginiae butanolide receptor. To elucidate the functions of VB-C and VB-C receptor, we isolated two mutants from S. virginiae by N-methyl-N'-nitro-N-nitrosoguanidine and hydroxylamine. The characteristics of the mutants showed that the producing time of antibiotics was very delayed due to a slower production of VB-C receptor than that of VB. In S. ostreogriseus(VB', receptor -) and S. graminofaciens(VBU, receptor+), which produce the virginiamycin, the addition of synthetic VB-C repressed the production of antibiotics in S. ostreogriseus but induced tbe production in S. graminofaciens. HPLC analysis of S. graminofaciens suggested that the VB-C might have an ability to induce the production of virginiamycin and other antibiotics. These results imply that the VB-C has an ability to trigger the production of other secondary metabolites as well as virginiamycin under VB-C receptor existence.

  • PDF

The Relationship between Virginiae Butanolide C(VB-C) and Receptor in Virginiamycin Production (Virginiamycin 생산유도에 관여하는 Virginiae Butanolide C(VB-C) 및 Receptor의 상관관계)

  • Kim, Hyun-Soo;Hyun, Ji-Sook;Yu, Tae-Shick
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 1996
  • Virginiae butanolide C(VB-C) is one of the butyrolactone autoregulators, which triggers the productin of virginiamycin in Streptomyces virginiae. To further understand the mechanism of virginiamycin induction, we isolated three mutants from S. virginiae by N-methyl-N'-nitrosoguanidine (NTG) treatment. The characteristics of the three mutants were confirmed as follows: the mutant No. 1 delayed the production of the VB-C, receptor and antibiotics; the mutant No.3 hyperproduced receptor; the mutant No.4 failed to produce the VB-C. The addition of synthetic VB-C couldn't induce the production of antibiotics in the mutant No.1 due to delayed production of receptor, could provoke the production of larger amount of antibiotics than parental wild type strain in the mutant No.3 due to the presence of large amount of receptor, and could induce production of very small amount of antibiotics in the mutant No.4 due to the absence of VB-C. Antimicrobial spectrum and HPLC analysis of the mutant No.1 and No.3 suggested that the VB-C might have a specific ability to induce the production of virginiamycin M and S. These results imply that the VB-C has an ability to trigger the production of virginiamycin under receptor existence in S. virginiae.

  • PDF

Induction of Erythromycin by Virginiamycin Inducing Factor, Virginiae Butanolide C (Virginiamycin 생합성 유도인자 Virginiae Butanolide C에 이한 Erythromycin 생산 유도)

  • Kim, Hyun-Soo;Seong, Lim-Shik
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.682-687
    • /
    • 1999
  • Virginiae butanolide C(VB-C) is one of the butyrolactone autoregulators, which triggers the production of virginiamycin in Streptomyces virginiae. In order to investigate the function of VB-C as inducer in other strains, Streptomyces erythraeus was used as a test strain(parent). VB-C binding receptor gene was introduced into S. erythraeus(transformant) and the production of VBs and specific VB-C binding protein were analysed in parent and transformant. When 300ng/ml of the synthetic VB-C was added at 0, 20, 44 h cultivation of the parent and at 44 h cultivation of the transformant, the initial production times a antibiotics were shortened by more than 8 and 6 h, respectively. The transformant showed strong antibiotic activity against B. subtilis. These results suggest that the VB-C might have an ability to induce the production of secondary metabolites in S. erythraeus.

  • PDF

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Cloning of Autoregulator Receptor Gene form Saccharopolyspora erythraea IFO 13426 (Saccharopolyspora erythraea IFO 13426으로부터 Autoregulator Receptor Protein Gene의 Cloning)

  • 김현수;이경화;조재만
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • For screening of autoregulator receptor gene from Saccharopolyspora erythraea, PCR was performed with primers of receptor gene designed on the basis of amino acid sequences of autoregulator receptor proteins with known function. PCR products were subcloned into the BamHI site of pUC19 and transformed into the E. coli DH5$\alpha$. The isolated plasmid from transformant contained the fragment of 120 bp, which was detected on 2% gel after BamHI treatment. The insert, 120 bp PCR product, was confirmed as the expected internal segment of gene encoding autoregulator receptor protein by sequencing. Southern and colony hybridization using Saccha. erythraea chromosomal DNA were performed with the insert as probe. The plasmid (pEsg) having 3.2 kbp SacI DNA fragment from Saccha. erythraea is obtained. The 3.2 kbp SacI DNA fragment was sequenced by the dye terminator sequencing. The nucleotide sequence data was analyzed with GENETYX-WIN (ver 3.2) computer program and DNA database. frame analyses of the nucleotide sequence revealed a gene encoding autoregulator receptor protein which is a region including KpnI and SalI sites on 3.2 kbp SacI DNA fragment. The autoregulator receptor protein consisting of 205 amino acid was named EsgR by author. In comparison with known autoregulator receptor proteins, homology of EsgR showed above 30%.

Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK;YEO SOO-HWAN;LEE IN SEON;LEE SAM-PIN;KITANI SHIGERU;NIHIRA TAKUYA;KIM HYUN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.