• Title/Summary/Keyword: V2C

Search Result 9,802, Processing Time 0.047 seconds

Effect of Extruded Products Made with Cassava Starch Blended with Oat Fiber and Resistant Starch on the Hypocholesterolemic Properties as Evaluated in Hamsters

  • Chang, Y.K.;He, Martinez-Flores;Martinez-Bustos, F.;Sgarbieri, V.C.
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.133-138
    • /
    • 2002
  • To examine the cholesterol-towering effects of extruded products made with cassava starch (CS) and blends of cassava starch with either resistant starch (CS-RS) or oat fiber (CS-OF) hamsters were fed with diets containing a high-cholesterol (2%) and high-fat (17%) diet for 20 days. Hamsters fed with a diet containing no cholesterol were used as a control. Total cholesterol (TC) levels in the CS-RS and CS-OF groups were significantly (p>0.05) lower compared to the CS group by 11.5% and 8.5%, respectively. Also, the diets containing fibers decreased the value of low-density lipoproteins plus very low-density lipoproteins fraction by 32.4% (CS-RS diet) and 51.7% (CS-OF), respectively, as compared to the CS diet. Total lipid values were significantly (p<0.05) lower in hamsters fed the CS-RS diet (916 mg/dL) and CS-OF diet (964 mg/dL) as compared to those fed the CS diet (1661 mg/dL). The results obtained in this study suggest that extruded products containing cassava starch blended with either resistant starch or oat fleer, could prevent health problems associated with high levels of cholesterol and hypertriglyceridemia induced by a high cholesterol and fat diet.

Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis (수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성)

  • Park, H.J.;Kim, Y.S.;Hong, S.H.;Kim, J.T.;Cho, J.Y.;Lee, W.H.;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

Measurement of Porcelain Shrinkage After Firing Using the Phase-Shifting Profilometry (위상이동 형상측정법을 이용한 도재 소성시의 도재 수축률의 측정)

  • Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • To compare several porcelains made by various manufacturers in shrinkage after firing and investigate the effect of condensation on shrinkage, specimens were prepared and the volume of each body was measured by the phase-shifting profilometry. Baseplate wax was cut by $2.5cm{\times}2cm$ and cast in nonprecious metal(Verabond, U.S.A.), then any surfaces of specimens were abrased and polished on the SiC abrasing papers, preparing 120 specimens. Specimens were divided into six groups according to the porcelain used, and the porcelain used in each group were as follows. Group I : Ceramco dentin porcelain Group B : Creation dentin porcelain Group III : Creation margin porcelain Group IV : Vintage margin porcelain Group V : Vita dentin porcelain Group VI : Vintage dentin porcelain Porcelain was built up on the metal plates using a small spoon and then solution matching to each porcelain was added. The six groups are subdivided into a and b. In subgroup a, only excessive solution was absorbed with tissue and in subgroup b, porcelain was condensed sufficiently. When build-up was completed, the shape was measured using the phase-shifting profilometry. After that, specimens were fired in the furnace programed for each porcelain and then their changed shape were measured again. Using the difference between the two above measurements, the ratio of shrinkage was calculated. Obtained results were as follows ; 1. Regardless of condensation, the volume of fired specimens were not different significantly between the two subgroups a and b in the same group. 2. The ratios of shrinkage were significantly higher in the groups porcelain built-up was condensed than in the groups not condensed 3. The ratios of shrinkage were in the range of 36.81-27.19% in the groups porcelain built up was condensed and 44.52-37.54% in the other groups not condensed.

  • PDF

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

Influence of Cell Stage of Donor Nucleus on Nuclear Injection, Electrofusion and In Vitro Development in Nuclear Transplant Rabbit Embryos (토기에서 공핵란의 발달단계가 할구주입, 전기융합 및 핵이식 수정란의 체외발달에 미치는 영향)

  • 박충생;전병균;이효종;최철민;최상용
    • Journal of Embryo Transfer
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 1994
  • This study evaluated the influence of cell stage of donor nucleus on nuclear injection, electrofusion and in vitro development in the rabbit to improve the efficiency of nuclear transplantation in the rabbit. The embryos of 8-, 16- and 32-cell stage were collected from the mated does by flushing viducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FGS) at 44, 54 and 60 hours after hCG injection. The blastorneres separated from these embryos were used as donor nucleus. The ovulated oocytes collected at 14 hours after hCG injection were used as recipient cytoplasm following removing the nucleus and the first polar body. The separated blastomeres were injected into the enucleated oocytes by micromanipulation and were electrofused in 0.28 M mannitol solution at 1.5 kV /cm, 60 $\mu$sec for three times. The fused oocytes were cocultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FGS for 72~120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The cultured nuclear transplant embryos were stained with Hoechst 33342 solution and the number of cells were counted by fluorescence microscopy. The successful injection rate of 8-, 16- and 32-cell-stageblastomeres into enucleated oocytes was 86.7, 91.0 and 93.9%, respectively. The electrofusion rate of 8-, 16- and 32-cell-stage blastomeres with enucleated oocytes was 93.3,89.3 and 79.0%, respectively. Development of blastomeres to blastocyst was similar with 8-,16- and 32-cell-stage donor nuclei(26.2, 25.8 and 26.6%, respectively, P<0.05). The mean number of cell cycle per day during in vitro culture in nuclear transplant embryos which received 8-, 16- and 32-cell- stage nuclei was 1.87, 1.81 and 1.43, respectively.

  • PDF

The Response Characteristics of as Addition Ratio of Arsenic in $CaWO_4/a-Se$ based X-ray Conversion Sensor ($CaWO_4/a-Se$ 구조의 X선 변환센서에서 a-Se의 Arsenic 첨가량에 따른 반응 특성)

  • Kang, Sang-Sik;Suk, Dae-Woo;Cho, Sung-Ho;Kim, Jae-Hyung;Nam, Namg-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.416-419
    • /
    • 2002
  • There are being two prominent studying for Digital Radiography. Direct and Indirect method of Digital Radiography are announced for producing high quality digital image. The one is using amorphous selenium as photoconductor and the other is using phosphor layer as a light conversion. But each two systems have strength and weakness such as high voltage and blurring effect. In this study, we investigated the electrical characteristic of $multi-layer\left(CaWO_{4}+a-Se \right)$ as a photoconductor according to the changing arsenic composition ratio. This is a basic research for developing of Hybrid digital radiography which is a new type X-ray detector. The arsenic composition ratio of a-Se compound is classified into 7 different kinds which have 0.1%, 0.3%, 0.5%, 1%, 1.5%, 5%, 10% and were made test sample throught thermo-evaporation. The phosphor layer of $CaWO_4$ was overlapped on a-Se using EFIRON optical adhesives. We measured the dark and photo current about the test sample and compared the electrical characteristic of the net charge and signal-to-noise ratio. Among other things, test sample of compound material of 0.3% arsenic showed good characteristic of $2.45nA/cm^2$ dark current and $357.19pC/cm^2/mR$ net charge at $3V/{\mu}m$.

  • PDF

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

Effect of Pelleting Treatment on Seed Germination in Adenophora triphylla (잔대 종자 펠렛처리가 종자 발아에 미치는 영향)

  • Im, Dong Hyeon;Nam, Joo Hee;Kim, Jong Hyuk;Lee, Min Ju;Rho, Il Rae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Sowing seeds of Adenophora triphylla is known to be difficult owing to their small size and irregular seed shape. Therefore, this study was conducted to develop a seed pelleting technique to save labor during sowing. Methods and Results: To identify the optimal germination temperature for A. triphylla seeds, the temperature range was set from 17℃ to 32℃. Germination surveys were conducted in plastic greenhouse conditions in March, April, and May to determine the appropriate sowing time. The optimal germination temperature for A. triphylla seeds was 29℃ and May was the optimal sowing time in plastic greenhouse conditions. Covering materials for seed pelleting used talc (T), kaolin (K), calcium carbonate (C), and vermiculite (V). The pellet binder used agar (A), pectin, xanthan gum, polyvinyl alcohol (PVA), and sodium alginate (S). The best suited treatment mixture were the best suited in kaolin / calcium carbonate / vermiculite (KCV), talc / calcium carbonate / vermiculite (TCV) mixture treatment for covering material, and sodium alginate (S), agar (A) as pellet binder, respectively. The germination rate was the best in TCV mixed with S. Conclusion: The mixture of TCV (2 : 1 : 3) + 1.5% S (TCVS), was found to be the best pelleting materials for A. triphylla seeds, and seed pelleting can be labor-saving during sowing.

MICROLEAKAGE OF VARIOUS COMPOSITE RESIN SYSTEMS (다양한 복합레진 시스템의 변연 누출도)

  • Kim, In-Soo;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • The object of this study was to compare the microleakage between various composite resin systems of multistep, one-bottle, and self-etching systems using electrical conductivity. After making class V cavities ($4{\times}3{\times}1.5{\;}mm$ around CEJ), they were bulk filled with three kinds of resins of A3. Teeth were storaged in a saline solution for one day, after then, they were finished and polished using Sof-Lex system. Another stress of thermocycling was made for 500 times from $5^{\circ}{\;}to{\;}55^{\circ}C$ with each dwelling time of 10 seconds. Electrical conductivity (microamphere, $\mu\textrm{A}$) was checked four times: before and after cavity preparation, after filing, after thermocycling. One-way ANOVA and 95% Scheffe Post Hoc test was used for checking any statistical difference among groups. Another 95% Paired Samples T-test was also used for estimating any significant difference within group after cavity filling or thermocycling. The results were as follows: 1 Every specimen showed various range of microleakage after filing. There was, however, no difference between composite resin systems. 2. All composite resin systems showed marked increase in microleakage with a thermocycling (p<0.05), there was, however, no difference between composite resin systems. 3. Although there was no significant difference between groups (p=0.078), one-bottle and self-etching systems seemed to be unstable than multistep system. Within the limits of this study, it was concluded that much more consideration should be needed when using thermally unstable one-bottle and self-etching systems that have multi-advantages from simplified step. More studies will be needed to solve these kinds of problems.

EFFECT OF RESIN AND FILLER TYPE ON THE FRACTURE TOUGHNESS OF UTMA-BASED LIGHT-CURED COMPOSITES (기질레진 필러가 UTMA계 광중합형 복합레진의 파괴인성에 미친는 영향)

  • Ahn, Yun-Sil;Hwang, Su-Jin;Bae, Tae-Sung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.604-613
    • /
    • 1999
  • This study was performed to evaluate the effect of resin and filler type on the fracture toughness of light-activated composites. Experimental composites were prepared using urethane tetramethacrylate(UTMA) and bisphenol glycidylmethacrylate(Bis-GMA) monomers and five different types of silica fillers. Fracture toughness was measured by a single edge V-notched beam(SEVNB) method, which was discussed from ASTM E399-78. Rectangular bars of $2.5{\times}5{\times}26mm$ were prepared with experimental composites and a notch about 2.25mm deep was carved at the center of the long axis of the specimen using a dental diamond disk driven by a dental micro engine. The flexural test was carried out at a crosshead speed of 0.05mm/min and fracture surfaces were observed under scanning electron microscope. The results obtained were summarized as follows: 1. The fracture toughness values of UTMA-based composites were relatively higher than those of Bis-GMA-based composites. 2. The highest fracture toughness value was observed in the UTMA-based composite containing the $1.5{\mu}m$-spherical fillers. 3 Aging in the distilled water at $37^{\circ}C$ for 10 days showed the increase of fracture toughness, which was severer in the Bis-GMA-based composites than those of UTMA-based composites. 4. The AE amplitude occurring during the fracture toughness tests was the highest at the point of macroscopic fracture.

  • PDF