• Title/Summary/Keyword: V2C

Search Result 9,803, Processing Time 0.044 seconds

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

Effect of Substrate-Induced Stress and Grain Size on the formation of VO2 thin films (기판에 의한 응력과 입계크기가 이산화바나듐 박막 형성에 미치는 영향 연구)

  • Koo, Hyun;Bae, Sung-Hwan;Shin, Dong-Min;Kwon, O-Jong;Park, Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1279_1280
    • /
    • 2009
  • Vanadium dioxide(VO2) has been reported to be the most attractive material for thermochromic windows due to its semiconductor-metal phase transition at around $68^{\circ}C$. However, our previous experiment showed it is difficult to grow VO2 thin films directly on glass substrate, whereas thermochromic VO2 thin films were successfully grown on R-cut sapphire substrate. Properties of VO2 thin films on different orientations of sapphire substrates were already reported. Furthermore, VO2 thin films were successfully grown heteroepitaxially on (001) preferred oriented ZnO coated glass. We deposited VO2 thin films using V2O5 targets on substrates with various lattice parameters with same orientation(SrTiO3, MgO, and Sapphire substrate of (001) orientation) by pulsed laser deposition. In this work, we will discuss the effects of lattice misfit, substrate-induced stress and grain size on the properties of VO2 thin films deposited on various substrate materials.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

N$_2$ Plasma Treatment Effects of Silicon Nitride Insulator Layer for Thin Film Transistor Applications

  • Ko, Jae-Kyung;Park, Yong-Seob;Park, Joong-Hyun;Kim, Do-Young;Yi, Jun-Sin;Chakrabarty, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.563-566
    • /
    • 2002
  • We investigated to decrease the leakage current of SiNx film by employing $N_2$ plasma treatment. The insulator layers were prepared by two step process; the $N_2$ plasma treatment and then PECVD SiNx deposition with $SiH_4$, $N_2$ gases. To prove the influence of the $N_2$ plasma treatment, the Si substrate was exposed to the plasma, which was generated in Ne gas ambient. Without plasma treatment SiNx film grow at the rate of 7. 03 nm/min, has a refractive index n = 1.77 and hydrogen content of $2.16{\times}10^{22}cm^{-3}$ for $N_2/SiH_4$ gas flow ratio of 20. The obtained films were analyzed in terms of deposition rates, refractive index, hydrogen concentration, and electrical properties. By employing $N_2$ plasma treatment, interface traps such as mobile charges and injected charges were removed, hysteresis of capacitance-voltage (C-V) disappeared. We observed plasma treated sample were decreased the leakage current density reduces by 2 orders with respect to the sample having no plasma treatment.

  • PDF

CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens

  • Oh, Sang-Keun;Yi, So Young;Yu, Seung Hun;Moon, Jae Sun;Park, Jeong Mee;Choi, Doil
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • WRKY family proteins are a class of plant-specific transcription factors involved in stress response signaling pathways. In this study a gene encoding a putative WRKY protein was isolated from a pepper EST database (http://genepool.kribb.re.kr). The cDNA, named Capsicum annuum WRKY2 (CaWRKY2), encodes a putative polypeptide of 548 amino acids, containing two WRKY domains with zinc finger motifs and two potential nuclear localization signals. Northern blot analyses showed that CaWRKY2 mRNA was preferentially induced during incompatible interactions of pepper plants with PMMoV, Pseudomonas syringae pv. syringae 61, and Xanthomonas axonopodis pv. vesicatoria race 3. Furthermore, CaWRKY2 transcripts were strongly induced by wounding and ethephon treatment, whereas only moderate expression was detected following treatment with salicylic acid and jasmonic acid. CaWRKY2 was translocated to the nucleus when a CaWRKY2-smGFP fusion construct was expressed in onion epidermal cells. CaWRKY2 also had transcriptional activation activity in yeast. Taken together our data suggest that CaWRKY2 is a pathogen-inducible transcription factor that may have a role in early defense responses to biotic and abiotic stresses.

Crystal Structure of Three-Dimensional Copper(II) Macrocyclic Complex Linked by Hydrogen-Bonds (수소 결합에 의한 사차원의 Copper(II) 거대고리 착물의 결정구조)

  • Park, Ki-Young;Hong, Choon-Pyo;Lee, Hye-Ok;Choo, Geum-Hong;Suh, Il-Hwan;Kim, Jin-Gyu;Park, Young-Soo
    • Korean Journal of Crystallography
    • /
    • v.11 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • The complex [Cu(L)(H2O)2] (PDC)(1)(L=2,5,9,12-tetramethyl-1,4,8,11- tetraazacyclotetradecane;PDC=1,4-pyridinedicarboxylate) has been synthesized and characterized by X-ray crys-tallography. The compound 1 crystallizes in the triclinic space group P1, with a=7.553(1)Å, b=9.619(2)Å, c=10.692(2)Å, α=74.22(1)°, β=73.32(1)°, γ=78.70(1)°, V=710.1(2)Å3, Z=1,R1(wR2) for 2634 observed reflections of [I>2σ(I)] was 0.0854(0.2242). The compound 1 is interconnected to give a three-dimensional network through weak hydrogen-bonding interactions.

  • PDF

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

Dry Etching Properties of TiO2 Thin Film Using Inductively Coupled Plasma for Resistive Random Access Memory Application

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.144-148
    • /
    • 2012
  • In this work, we investigated to the etching characteristics of $TiO_2$ thin film and the selectivity using the inductively coupled plasma system. The etch rate and the selectivity were obtained with various gas mixing ratios. The maximum etch rate of $TiO_2$ thin film was 61.6 nm/min. The selectivity of $TiO_2$ to TiN, and $TiO_2$ to $SiO_2$ were obtained as 2.13 and 1.39, respectively. The etching process conditions are 400 W for RF power, -150 V for DC-bias voltage, 2 Pa for the process pressure, and $40^{\circ}C$ for substrate temperature. The chemical states of the etched surfaces were investigated with X-ray photoelectron spectroscopy (XPS). Its analysis showed that the etching mechanism was based on the physical and chemical pathways in the ion-assisted physical reaction.