DOI QR코드

DOI QR Code

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying

기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성

  • Woo S.H. (Dept. of Nuclear Materials Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim W.W. (Dept. of Nuclear Materials Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim S.J. (Department of Nano Science and Technology, Sejong University) ;
  • Rhee C.K. (Dept. of Nuclear Materials Technology Development, Korea Atomic Energy Research Institute (KAERI))
  • 우승희 (한국원자력연구소, 원자력재료기술개발부) ;
  • 김흥회 (한국원자력연구소, 원자력재료기술개발부) ;
  • 김선재 (세종대학교 나노기술연구소/나노공학과) ;
  • 이창규 (한국원자력연구소, 원자력재료기술개발부)
  • Published : 2005.08.01

Abstract

Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

Keywords

References

  1. S. J. Kim and S. D. Park: J. Kor. Inst. Met & Mater. 39 (2001) 214
  2. F. Y. Sun, M. Wu and W. G. Li, Chin: J. Catal., 19 (1998) 229
  3. L. Spanhel, H. Weller and A. Henglein: J. Am, Chem. Soc., 109 (1984) 6632 https://doi.org/10.1021/ja00256a012
  4. K. R. Gopidas, M. Bohorquez and P.V. Kamat: J. Phys. Chem., 94 (1990) 6435 https://doi.org/10.1021/j100379a051
  5. X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge: J. Photoch Photobio. A. 141 (2001) 209 https://doi.org/10.1016/S1010-6030(01)00446-4
  6. R. Asahi, T. Morikawa, T. Ohwake, K. Aoke and Y. Taga: Science 293 (2001) 269 https://doi.org/10.1126/science.1061051
  7. M. S. Jeon, W. S. Yoon, H. K. Joo, T. K. Lee and H. Lee: Appl. Surf. Sci. 165 (2000) 209 https://doi.org/10.1016/S0169-4332(00)00495-5
  8. J. Yang, J. M. F. Ferreira: Mater. Res. Bull., 33 (1998) 389 https://doi.org/10.1016/S0025-5408(97)00249-3
  9. H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo: J. Synchrotron Rad., 6 (1999) 451 https://doi.org/10.1107/S0909049598017257
  10. D. H. Kim, H. S. Hong, S. J. Kim, J. S. Song and K. S. Lee: J. Alloys & Comp. 375 (2004) 259 https://doi.org/10.1016/j.jallcom.2003.11.044
  11. Md. Mosaddeq-ur-Rahman, K. M. Krishna, T. Miki, T. Soga, k. Igarash, S. Tanemura and M. Umeno: Sol. Energ. Mat. Sol. C 48 (1997) 123 https://doi.org/10.1016/S0927-0248(97)00080-9
  12. M. Umeno et. al.: Mat. Sci & Eng. B 41 (1996) 67 https://doi.org/10.1016/S0921-5107(96)01626-1