• Title/Summary/Keyword: Utilizing AI

Search Result 272, Processing Time 0.021 seconds

Examining the Feasibility of Utilizing a Large Language Model for Korean Grammatical Error Correction (한국어 맞춤법 교정을 위한 초거대 언어 모델의 잠재적 능력 탐색)

  • Seonmin Koo;Chanjun Park;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.61-65
    • /
    • 2023
  • 최근, 대부분의 태스크가 초거대 언어 모델로 통합되고 있을 정도로 많은 관심 및 연구되고 있다. 초거대 언어 모델을 효과적으로 활용하기 위해서는 모델의 능력에 대한 분석이 선행되어야 하나, 한국어에 대한 분석 및 탐색은 상대적으로 부족하다. 본 논문에서는 한국어 맞춤법 교정 태스크를 통해 초거대 언어 모델의 능력을 탐색한다. 맞춤법 교정 태스크는 문장의 구조 및 문법을 이해하는 능력이 필요하며, 사용자의 만족도에 영향을 미칠 수 있는 중요한 태스크이다. 우리는 맞춤법 세부 유형에 따른 ChatGPT의 제로샷 및 퓨샷성능을 평가하여 초거대 언어 모델의 성능 분석을 수행한다. 실험 결과 제로샷의 경우 문장부호 오류의 성능이 가장 우수했으며, 수사 오류의 성능이 가장 낮았다. 또한, 예제를 더 많이 제공할수록 전체적인 모델의 성능이 향상되었으나, 제로샷의 경우보다 오류 유형 간의 성능 차이가 커지는 것을 관찰할 수 있었다.

  • PDF

A Scene-Specific Object Detection System Utilizing the Advantages of Fixed-Location Cameras

  • Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.329-336
    • /
    • 2023
  • This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.

Real - Time Applications of Video Compression in the Field of Medical Environments

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.73-76
    • /
    • 2023
  • We introduce DCNN and DRAE appraoches for compression of medical videos, in order to decrease file size and storage requirements, there is an increasing need for medical video compression nowadays. Using a lossy compression technique, a higher compression ratio can be attained, but information will be lost and possible diagnostic mistakes may follow. The requirement to store medical video in lossless format results from this. The aim of utilizing a lossless compression tool is to maximize compression because the traditional lossless compression technique yields a poor compression ratio. The temporal and spatial redundancy seen in video sequences can be successfully utilized by the proposed DCNN and DRAE encoding. This paper describes the lossless encoding mode and shows how a compression ratio greater than 2 (2:1) can be achieved.

Basic System Design in the PBNM Scheme for Multiple Domains as Cyber Physical System Using Data Science and AI

  • Kazuya Odagiri;Shogo Shimizu;Naohiro Ishii
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2023
  • In the current Internet system, there are many problems using anonymity of the network communication such as personal information leaks and crimes using the Internet system. This is why TCP/IP protocol used in Internet system does not have the user identification information on the communication data, and it is difficult to supervise the user performing the above acts immediately. As a study for solving the above problem, there is the study of Policy Based Network Management (PBNM). This is the scheme for managing a whole Local Area Network (LAN) through communication control for every user. In this PBNM, two types of schemes exist. As one scheme, we have studied theoretically about the Destination Addressing Control System (DACS) Scheme with affinity with existing internet. By applying this DACS Scheme to Internet system management, we will realize the policy-based Internet system management. In this paper, basic system design for PBNM scheme for multi-domain management utilizing data science and AI is proposed.

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

A Review of Public Datasets for Keystroke-based Behavior Analysis

  • Kolmogortseva Karina;Soo-Hyung Kim;Aera Kim
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.18-26
    • /
    • 2024
  • One of the newest trends in AI is emotion recognition utilizing keystroke dynamics, which leverages biometric data to identify users and assess emotional states. This work offers a comparison of four datasets that are frequently used to research keystroke dynamics: BB-MAS, Buffalo, Clarkson II, and CMU. The datasets contain different types of data, both behavioral and physiological biometric data that was gathered in a range of environments, from controlled labs to real work environments. Considering the benefits and drawbacks of each dataset, paying particular attention to how well it can be used for tasks like emotion recognition and behavioral analysis. Our findings demonstrate how user attributes, task circumstances, and ambient elements affect typing behavior. This comparative analysis aims to guide future research and development of applications for emotion detection and biometrics, emphasizing the importance of collecting diverse data and the possibility of integrating keystroke dynamics with other biometric measurements.

Development Direction of Manned and Unmanned Complex Combat System to Respond to the Future Battlefield: Focusing on ICT (미래 전장 대응을 위한 유무인 복합전투체계 발전방향: ICT를 중심으로)

  • Bal Jeong;Kyungsook Lee;Bonjin Koo
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.4
    • /
    • pp.47-61
    • /
    • 2024
  • A manned and unmanned complex combat system refers to a combat system that performs various missions by operating manned and unmanned aircraft together. The combat system is rapidly becoming more advanced due to recent remarkable developments in information and communication technologies(ICT), including AI and 5G, and major countries are actively using it in actual battlefields. Furthermore, the importance of this combat system is increasing and it is emerging as the core of future warfare. Accordingly, this study analyzed the concept of the manned and unmanned complex combat system and the current status of its integration with ICT, presented an operational concept utilizing it, and then analyzed the actual current status of related combat systems at home and abroad. Lastly, five suggestions were presented for the development of domestic manned and unmanned complex combat systems.

Experiment in the PBNM Scheme for Multiple Domains as Cyber Physical System Using Data Science and AI

  • Kazuya Odagiri;Shogo Shimizu;Naohiro Ishii
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.54-60
    • /
    • 2024
  • In the current Internet system, there are many problems using anonymity of the network communication such as personal information leaks and crimes using the Internet system. This is why TCP/IP protocol used in Internet system does not have the user identification information on the communication data, and it is difficult to supervise the user performing the above acts immediately. As a study for solving the above problem, there is the study of Policy Based Network Management (PBNM). This is the scheme for managing a whole Local Area Network (LAN) through communication control for every user. In this PBNM, two types of schemes exist. As one scheme, we have studied theoretically about the Destination Addressing Control System (DACS) Scheme with affinity with existing internet. By applying this DACS Scheme to Internet system management, we will realize the policy-based Internet system management. In this paper, basic system design for PBNM scheme for multi-domain management utilizing data science and AI is showed with experiment in feasibility.

An Exploratory Study on the Trustworthiness Analysis of Generative AI (생성형 AI의 신뢰도에 대한 탐색적 연구)

  • Soyon Kim;Ji Yeon Cho;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2024
  • This study focused on user trust in ChatGPT, a generative AI technology, and explored the factors that affect usage status and intention to continue using, and whether the influence of trust varies depending on the purpose. For this purpose, the survey was conducted targeting people in their 20s and 30s who use ChatGPT the most. The statistical analysis deploying IBM SPSS 27 and SmartPLS 4.0. A structural equation model was formulated on the foundation of Bhattacherjee's Expectation-Confirmation Model (ECM), employing path analysis and Multi-Group Analysis (MGA) for hypothesis validation. The main findings are as follows: Firstly, ChatGPT is mainly used for specific needs or objectives rather than as a daily tool. The majority of users are cognizant of its hallucination effects; however, this did not hinder its use. Secondly, the hypothesis testing indicated that independent variables such as expectation- confirmation, perceived usefulness, and user satisfaction all exert a positive influence on the dependent variable, the intention for continuance intention. Thirdly, the influence of trust varied depending on the user's purpose in utilizing ChatGPT. trust was significant when ChatGPT is used for information retrieval but not for creative purposes. This study will be used to solve reliability problems in the process of introducing generative AI in society and companies in the future and to establish policies and derive improvement measures for successful employment.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.