• Title/Summary/Keyword: Utility power system

Search Result 675, Processing Time 0.038 seconds

Analysis of 3 Phase utility interactive photovoltaic power generation system (3상 태양광발전시스템의 계통연계운전 해석)

  • Kim, Woo-Hyun;Kim, Chang-Il;Kim, Bong-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.236-238
    • /
    • 1999
  • This paper presents a model and analysis results of 3 phase utility interactive photovoltaic power generation system. The control system is composed of feed forward, feedback and PID system. The voltage source inverter system provides sinusoidal PWM at current for the loads of utility system. A phase to ground fault and 3 phase fault are analyzed, and the results are discussed.

  • PDF

Utility Interactive PV Systems with Power Shaping Function for Increasing Peak Power Cut Effect

  • Choe, Gyu-Ha;Kim, Hong-Sung;Heo, Hye-Seong;Jeong, Byong-Hwan;Choi, Young-Ho;Kim, Jae-Chul
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.371-380
    • /
    • 2008
  • This paper describes the Utility Interactive PV (UIPV) system which can improve the peak-cut effect by adding an energy storage device of batteries to the power converter. The proposed system has three possible operation modes depending on relative condition of PV output, which can have the power shaping function covering the peak power for 3 hours. A new power circuit and an application algorithm have been applied to the UIPV system which is based on working PV system during a 3-hour peak time. The energy relationship by the proposed system is analyzed theoretically and experimentally. The proposed system is evaluated at the viewpoint of cost and total spacing, which enables the proposed UIPV system to have the reduction of the peak power demand and hence to improve the power capacity of peak cut.

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.

A Wide Input Range Active Multi-pulse Rectifier For Utility Interface Of Power Electronic Converters

  • Hahn Jaehong;Enjeti Prasad N.;Park In-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.512-517
    • /
    • 2001
  • In this paper, a wide input range active multi-pulse rectifier for utility interface of power electronic converters is proposed. The scheme combines multi-pulse method using a V-A transformer and boost rectifier modules. A current control scheme for the rectifier modules is proposed to achieve sinusoidal line currents in the utility input over a wide input range of input voltage and output load conditions. A design example is included for a 208V to 460V input, $700V_{dc}$ do 10kW output rectifier system. Simulation results are shown.

  • PDF

A case of the PQMS construction in the distribution power system (배전계통 고조파 상시감시 시스템 구축 및 측정사례)

  • Park, Yong-Up;Choi, Sun-Kyu;Lee, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.418-419
    • /
    • 2011
  • Recently, the korea power quality standard has been established based on the IEC Std. By IEC Std., the power quality assessment point is measured in PCC. In this case, the utility has to construct PQM system in all customer PCC point and the PQ meter cost would be very high in order to acquire the suitable data. Accordingly the utilities could not apply to PQM system in the distribution power system by the cost and communication problem. In this paper, the proposed economical PQMS(Power quality monitoring system) of Utility.

  • PDF

The Utility Interaction type PV system by using partial resonant system (부분공진기법을 이용한 연계형 태양광발전시스템)

  • 고강훈;이현우;김영철;최광주
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.290-295
    • /
    • 1999
  • This paper describes Trans-less type utility interactive system that is combined with buck/boost chopper applying partial resonant method, which remove Trans, and high efficient PWM inverter. Therefore, it is possible to make it lightweight, to cut down the cost, and to improve its reliability. What the merits of this system are that we con transmit arbitrary power to load and utility regardless of generating voltage magnitude and we can always obtain high factor controlling by equal phase signal with utility.

  • PDF

A Study on the Operating Characteristics for Utility interactive 50KW Photovoltaic System (50KW 계통연계형 태양광발전시스템 운전특성에 관한 연구)

  • Lee, K.Y.;Chung, B.H.;Choi, M.H.;Lim, B.O.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.243-246
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Analysis of Operating Efficiency for 50kW Utility Interactive Photovoltaic System in Chosun university (조선대학교 기숙사 50kW 계통연계형 태양광발전시스템 효율 분석)

  • Piao, Zheng-Guo;Park, Jong-Min;Lee, Kang-Yeon;Lim, Hong-Woo;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1736-1738
    • /
    • 2005
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

A Utility Interactive Photovoltaic Generation System using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Kim D. G.;Chung J. H.;Chung C. B.;Kim S. N.;Lee S. H.;Kang S. W.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.133-136
    • /
    • 2004
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF