구어 연구를 위한 전사 과정에서 문자로 표현된 발화를 녹음 음성에 연결해주는 작업을 레이블링이라고 한다. 기존 레이블링 도구들은 대부분 수동으로 작업이 이루어진다. 제안하는 반자동 레이블링은 자동화 모듈과 수동 조정 모듈로 구성된다. 자동화 모듈은 G.Saha 알고리즘을 활용하여 음성구간을 추출하고, 기구축된 발화텍스트의 발화 수와 발화의 길이 정보를 이용하여 발화구간을 예측한다. 본 논문에서는 기존 수동 도구의 정확성을 유지하기 위하여 자동 레이블링된 발화구간을 보정하기 위한 수동 조정 사용자 인터페이스를 제공한다. 제안하는 반자동 레이블링 알고리즘으로 구현한 도구는 기존 수동 레이블링 도구와 비교하여 작업 속도가 평균 27% 향상되었다.
An example-based dialogue system tries to utilize many pairs which are stored in a dialogue database. The most important part of the example-based dialogue system is to find the most similar utterance to user's input utterance. Modality, which is characterized as conveying the speaker's involvement in the propositional content of a given utterance, is one of the core sentence features. For example, the sentence "I want to go to school." has a modality of hope. In this paper, we have proposed a modality classification system which can predict sentence modality in order to improve the performance of example-based dialogue systems. We also define a modality tag set for a dialogue system, and validate this tag set using a rule-based modality classification system. Experimental results show that our modality tag set and modality classification system improve the performance of an example-based dialogue system.
이 연구는 스마트 홈 환경에서 대화 주제 유형에 따라 음성 에이전트의 선행 발화 방식이 사용자 경험에 미치는 효과를 확인하고자 하였다. 과제 중심적 대화와 관계 중심적 대화의 두 가지 대화 유형을 바탕으로, 스마트 스피커의 발화 방식을 선행 발화와 후행 발화로 구분하여 네 가지 시나리오를 제작하였다. 온라인 실험을 진행하여 총 62명의 참가자를 발화 방식에 따라 두 그룹으로 나누어, 대화 유형의 두 가지 시나리오를 진행하게 하고, 호감도, 심리적 저항감, 지각된 지능의 사용자 경험 요인을 측정하였다. 실험 결과, 대화 유형 중 과제 중심적 대화에서 호감도의 주효과가 나타났고, 발화 방식에서 선행 발화에 대한 심리적 저항감의 주효과가 나타났다. 선행 발화 방식은 과제 중심적 대화에서 호감도와 지각된 지능을 높이는 효과를 보였다.
대화형 에이전트의 사용 범위와 기능이 점차 확장되고 있다. 특히나, 사용자의 호출이 있어야만 말을 하는 대화형 에이전트에서 사용자의 호출 없이도 먼저 말을 걸 수 있는 선제 발화하는 대화형 에이전트에 대한 연구와 기술개발이 이루어지고 있다. 그러나 아직 초기 단계이기 때문에 선제 발화하는 대화형 에이전트가 사용자에게 어떠한 영향을 미칠지에 대한 연구가 부족한 상황이다. 이에 이 연구는 선제 발화하는 대화형 에이전트가 사용자 경험에 미치는 영향을 확인하기 위해 사용자의 과제 수행 조건과 에이전트의 자기노출 유무를 독립변인으로 하는 2×3 혼합 설계를 통해 친밀감, 기능적 만족감, 심리적 저항감, 작업 부하를 측정하였다.
본 연구는 예제 기반 대화 시스템에서 응답을 결정하기 위한 핵심 요소 기술 중 하나인 발차간 유사도 측정 방법의 개선에 대해 논한다. 일반적인 문장간 유사도 측정과는 달리, 대화에서 발차간 유사도 측정은 단어 분포간 유사도 뿐만 아니라, 문형, 시제, 긍/부정, 양태등 대화 자연스러움을 결정하는 문장의 다양한 언어적 요소 역시 중요하게 고려되어야 한다. 그러나 기존 연구에서는 이에 대한 고려가 부족 했던 것이 사실이며, 따라서 본 연구에서는 개선 방안으로서 발화의 형태적 유사성 뿐 아니라 다양한 언어적 자질들을 분석하고 이를 유사도 측정에 반영하여 정확도를 향상시키는 새로운 유사도 측정 방법을 제안한다. 또한, 발차의 자질별 유사도를 고려함으로써, 한정된 수의 예제들의 활용도를 높일 수 있는 방법을 제안하였다. 실험 결과 제안하는 방법이 기존 방식에 비해 10%p 이상 정확도 성능 향상이 있었다.
소음환경에서의 음성인식 문제점으로 인해 1990년대 중반부터 음성정보와 영양정보를 결합한 AVSR(Audio Visual Speech Recognition) 시스템이 제안되었고, Lip Reading은 AVSR 시스템에서 시각적 특징으로 사용되었다. 본 연구는 효율적인 AVSR 시스템을 구축하기 위해 입 모양만을 이용한 발화 단어 인식률을 극대화하는데 목적이 있다. 본 연구에서는 입 모양 인식을 위해 실험단어를 발화한 입력 영상으로부터 영상의 전처리 과정을 수행하고 입술 영역을 검출한다. 이후 DNN(Deep Neural Network)의 일종인 CNN(Convolution Neural Network)을 이용하여 발화구간을 검출하고, 동일한 네트워크를 사용하여 입 모양 특징 벡터를 추출하여 HMM(Hidden Markov Mode)으로 인식 실험을 진행하였다. 그 결과 발화구간 검출 결과는 91%의 인식률을 보임으로써 Threshold를 이용한 방법에 비해 높은 성능을 나타냈다. 또한 입모양 인식 실험에서 화자종속 실험은 88.5%, 화자 독립 실험은 80.2%로 이전 연구들에 비해 높은 결과를 보였다.
In this paper, the natural language dialogue understanding sytem, based on discourse information and plan recognition, is designed and implemented. The system needs to analyze the user's input utterance and acquire the discoruse information to perform plan recognition and facilitate cooperative response. This paper proposes the mehtod of controlling a dialogue, based on the algorithm for extracting the discourse information. When the discourse information for dialogue understanding is extracted, the information-based value in feature structure that is obtained form korean parser is used. And the system makes use of the structure. Thus it can offer the response that the user wants to take, and let the dialogue to study in utterance level and enhance the efficiency of dialogue understanding. In this paper, we apply the system to the hotel reservation domain and show the mehtod of using the discoruse information to control the dialogue.
예제 기반 챗봇은 사용자 발화와 가장 유사한 예제 발화를 대화 예제 데이터베이스로부터 검색하여 응답을 생성한다. 가장 유사한 발화를 찾는 것은 응답의 적절성과 직결되는 것임에도 불구하고, 유사 발화 검색을 위해 어떠한 자질을 사용할 것인지, 어떠한 방식이 좋은 지에 대한 기존 연구는 부족하였다. 본 연구에서는 검색의 정확도와 예제의 활용도를 높이기 위해 다양한 어휘적, 의미적 자질을 이용한 기계 학습 방법을 제안한다. 실험 결과 1) 대화 예제 데이터베이스의 활용도 2) 예제 발화의 매칭의 정확률 3) 답변의 질적인 측면에서 제안하는 방법은 기존의 방법에 비해 더 나은 성능을 보였다.
화행이란 발화 속에 포함되어 있는 화자에 의해 의도된 언어적 행위이다. 대화 시스템에서 입력된 발화에 적합한 화행을 분류하는 것은 중요하다. 기존의 화행분류에 관한 연구는 규칙기반과 기계학습 기반의 방법을 많이 사용한다. 본 논문에서는 대표적인 기계학습 방법인 지지벡터기계(SVM)와 변환기반 학습(TBL)을 조합한 화행 분류 방법을 제안한다. 이를 위해, 화행별 학습 발화의 수에 기반하여 분류 우선순위를 조정함으로써 지지벡터기계의 분류 편향 문제를 해결하였고, 오답일 확률이 높은 분류 결과에 대해서 변환 기반 학습을 통해 생성된 보정 규칙을 적용함으로써 화행분류 성능을 개선하는 방법을 제안한다. 본 논문에서 화행별 학습 발화 수의 차이를 고려한 분류 우선순위 변화와 후보정 규칙을 이용한 화행분류 방법을 실험을 통해 평가하였으며, 이는 학습 발화 수가 낮은 화행의 우선순위를 고려하지 않은 기존의 화행 분류보다 성능이 향상되었다.
목적 지향 대화에서 사용자의 의도는 화행과 개념열의 쌍으로 구성된 영역행위로 표현될 수 있다. 사용자 발화에 대한 영역행위 예측은 음성 인식 오류를 보정하는데 유용하며, 시스템 발화에 대한 영역행위 예측은 유연한 응답 생성에 유용하다. 본 논문에서는 신경망을 이용하여 영역행위를 예측하는 모델을 제안한다. 제안 모델은 대화 이력 벡터와 현재 영역행위를 신경망의 입력으로 사용하여 다음 영역행위를 예측한다. 실험 결과, 제안 모델은 화행 예측과 개념열 예측에서 각각 80.02%, 82.09%의 정확률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.