Abstract
An example-based dialogue system tries to utilize many pairs which are stored in a dialogue database. The most important part of the example-based dialogue system is to find the most similar utterance to user's input utterance. Modality, which is characterized as conveying the speaker's involvement in the propositional content of a given utterance, is one of the core sentence features. For example, the sentence "I want to go to school." has a modality of hope. In this paper, we have proposed a modality classification system which can predict sentence modality in order to improve the performance of example-based dialogue systems. We also define a modality tag set for a dialogue system, and validate this tag set using a rule-based modality classification system. Experimental results show that our modality tag set and modality classification system improve the performance of an example-based dialogue system.