• Title/Summary/Keyword: User tracking

Search Result 611, Processing Time 0.025 seconds

Authoring Personal Virtual Studio Using Tangible Augmented Reality (탠저블 증강현실을 활용한 개인용 가상스튜디오 저작)

  • Rhee, Gue-Won;Lee, Jae-Yeol;Nam, Ji-Seung;Hong, Sung-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-88
    • /
    • 2008
  • Nowadays personal users create a variety of multi-media contents and share them with others through various devices over the Internet since the concept of user created content (UCC) has been widely accepted as a new paradigm in today's multi-media market, which has broken the boundary of contents providers and consumers. This paradigm shift has also introduced a new business model that makes it possible for them to create their own multi-media contents for commercial purpose. This paper proposes a tangible virtual studio using augmented reality to author multi-media contents easily and intuitively for personal broadcasting and personal content generation. It provides a set of tangible interfaces and devices such as visual markers, cameras, movable and rotatable arms carrying cameras, and miniaturized set. They can offer an easy-to-use interface in an immersive environment and an easy switching mechanism between tangible environment and virtual environment. This paper also discusses how to remove inconsistency between real objects and virtual objects during the AR-enabled visualization with a context-adaptable tracking method. The context-adaptable tracking method not only adjusts the locations of invisible markers by interpolating the locations of existing reference markers, but also removes a jumping effect of movable virtual objects when their references are changed from one marker to another.

Mobile App Recommendation with Sequential App Usage Behavior Tracking

  • Yongkeun Hwang;Donghyeon Lee;Kyomin Jung
    • Journal of Internet Technology
    • /
    • v.20 no.3
    • /
    • pp.827-838
    • /
    • 2019
  • The recent evolution of mobile devices and services have resulted in such plethora of mobile applications (apps) that users have difficulty finding the ones they wish to use in a given moment. We design an app recommendation system which predicts the app to be executed with high accuracy so that users are able to access their next app conveniently and quickly. We introduce the App-Usage Tracking Feature (ATF), a simple but powerful feature for predicting next app launches, which characterizes each app use from the sequence of previously used apps. In addition, our method can be implemented without compromising the user privacy since it is solely trained on the target user's mobile usage data and it can be conveniently implemented in the individual mobile device because of its less computation-intensive behavior. We provide a comprehensive empirical analysis of the performance and characteristics of our proposed method on real-world mobile usage data. We also demonstrate that our system can accurately predict the next app launches and outperforms the baseline methods such as the most frequently used apps (MFU) and the most recently used apps (MRU).

A Study on User Adoption of Advanced ICTs in Uganda : Focused on GIS/GPS Gorilla Tracking System (우간다에서의 고급 정보통신기술 수용도 연구 : GIS/GPS 고릴라 추적 시스템 사례)

  • Tedson, Twesigye;Hwang, Gee-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.192-203
    • /
    • 2016
  • Uganda is a country blessed with the biggest number of mountain Gorillas in the whole world. These animals contribute at least 12% in revenue generation to the Tourism sector through tracking by both local and foreign tourists who pay for the tracking permits. However, Gorilla tracking is also a big challenge even in the presence of highly skilled and well-trained game rangers. Development and implementation of a secure Computer and Mobile based Gorilla Tracking (GT) system that uses GIS and GPS technologies would be the most ideal technology to use. Therefore, this study aimed to find out the critical factors that would affect the Behavioral Intention of the would-be users to successfully decide to use such GIS/GPS-GT system. We used the existing UTAUT model to integrate six factors such as Performance Expectancy, Effort Expectancy, Employee Peer Influence, Facilitating Conditions, Behavioral Intention and System Use. However, Infrastructure Availability and Non-Technical Facilitating Conditions were added to reflect Ugandan ICT context. This amended UTAUT model was used to carry out the survey. The questionnaire was emailed to 220 government employees in the fields of ICT, Tour and Travel, Environmental Groups officials and Farmers who garden near the game reserves. A total of 133 were obtained fully completed, whereas 127 were deemed usable thus yielding a response rate of 58%. The analysis results show that except for non-technical facilitating conditions, effort expectancy, peer influence, performance expectancy and infrastructure availability positively affects behavioral Intention to use GIS/GPS-GT. This indicates that people in Uganda don't bother about regulations and rules in regard to using information system. As long as the system does what they want it to, anything else does not matter. As an employee in an organization is told to use a system by their supervisor, they have no objection to otherwise they risk losing their job. This implies that, supervisors have a great responsibility in the process of developing, implementing and using the system in Uganda.

3D Multiple Objects Detection and Tracking on Accurate Depth Information for Pose Recognition (자세인식을 위한 정확한 깊이정보에서의 3차원 다중 객체검출 및 추적)

  • Lee, Jae-Won;Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.963-976
    • /
    • 2012
  • 'Gesture' except for voice is the most intuitive means of communication. Thus, many researches on how to control computer using gesture are in progress. User detection and tracking in these studies is one of the most important processes. Conventional 2D object detection and tracking methods are sensitive to changes in the environment or lights, and a mix of 2D and 3D information methods has the disadvantage of a lot of computational complexity. In addition, using conventional 3D information methods can not segment similar depth object. In this paper, we propose object detection and tracking method using Depth Projection Map that is the cumulative value of the depth and motion information. Simulation results show that our method is robust to changes in lighting or environment, and has faster operation speed, and can work well for detection and tracking of similar depth objects.

Security Model Tracing User Activities using Private BlockChain in Cloud Environment (클라우드 환경에서 프라이빗 블록체인을 이용한 이상 행위 추적 보안 모델)

  • Kim, Young Soo;Kim, Young Chan;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.475-483
    • /
    • 2018
  • Most of logistics system has difficulties in transportation logistics tracking due to problems in real world such as discordance between logistics information and logistics flow. For the solution to these problems, through case study about corporation, suppliers that transport order items in shopping mall, we retain traceability of order items through accordance between logistics and information flow and derive transportation logistics tracking model. Through literature review, we selected permissioned public block chain model as reference model which is suitable for transportation logistics tracking model. We compared, analyzed and evaluated using centralized model and block chain as application model for transportation logistics tracking model. In this paper we proposed transportation logistics tracking model which integrated with logistics system in real world. It can be utilized for tracking and detection model and also as a tool for marketing.

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

Gaze Tracking System Using Feature Points of Pupil and Glints Center (동공과 글린트의 특징점 관계를 이용한 시선 추적 시스템)

  • Park Jin-Woo;Kwon Yong-Moo;Sohn Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.80-90
    • /
    • 2006
  • A simple 2D gaze tracking method using single camera and Purkinje image is proposed. This method employs single camera with infrared filter to capture one eye and two infrared light sources to make reflection points for estimating corresponding gaze point on the screen from user's eyes. Single camera, infrared light sources and user's head can be slightly moved. Thus, it renders simple and flexible system without using any inconvenient fixed equipments or assuming fixed head. The system also includes a simple and accurate personal calibration procedure. Before using the system, each user only has to stare at two target points for a few seconds so that the system can initiate user's individual factors of estimating algorithm. The proposed system has been developed to work in real-time providing over 10 frames per second with XGA $(1024{\times}768)$ resolution. The test results of nine objects of three subjects show that the system is achieving an average estimation error less than I degree.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

Accuracy Analysis of Indoor Positioning System Using Wireless Lan Network (무선 랜 네트워크를 이용한 실내측위 시스템의 정확도 분석)

  • Park Jun-Ku;Cho Woo-Sug;Kim Byung-Guk;Lee Jin-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • There has been equipped wireless network infrastructure making possible to contact mobile computing at buildings, university, airport etc. Due to increase of mobile user dramatically, it raises interest about application and importance of LBS. The purpose of this study is to develop an indoor positioning system which is position of mobile users using Wireless LAN signal strength. We present Euclidean distance model and Bayesian inference model for analyzing position determination. The experimental results showed that the positioning of Bayesian inference model is more accurate than that of Euclidean distance model. In case of static target, the positioning accuracy of Bayesian inference model is within 2 m and increases when the number of cumulative tracking points increase. We suppose, however, Bayesian inference model using 5- cumulative tracking points is the most optimized thing, to decrease operation rate of mobile instruments and distance error of tracking points by movement of mobile user.

Extraction of user interest area using foreground image separation and mouse tracking program (전경 이미지 분리와 마우스 트랙킹 프로그램을 이용한 사용자 관심 영역 유도)

  • Lee, MyounJae
    • Journal of Korea Game Society
    • /
    • v.17 no.5
    • /
    • pp.113-122
    • /
    • 2017
  • The location of the objects that make up a game can be an element of immersion for players. repeatedly appearing at the same position, the fun may be reduced, and as the play time elapses, the players will feel the game's fun as they appear in a larger area than at the beginning of the game play. This paper is a study to find out the location of objects according to the passage of time and to see how players controlled these objects. First, foreground images are extracted and accumulated using OpenCV programming language. The accumulated result is displayed as a heat map image. Second, the mouse movement area is detected using the mouse tracking program and compared with the heat map image, so that the screen area in which the player is interested can be known.